Skip to main content

Advertisement

Log in

Structure formation in syntactic foam based on metal-coated glass microspheres and polysiloxane under the action of a nanosecond relativistic electron beam

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Changes in the chemical and phase compositions, as well as the formation of micro- and nanostructured objects in syntactic foams consisting of tungsten-modified glass microspheres and a polymeric binder based on a phenylsilsesquioxane—b-dimethylsiloxane block copolymer, caused by the action of a single relativistic electron beam with an average energy in the range of 180–260 keV and a peak current power in the range of 4.5–6.8 GW were studied by scanning electron microscopy and X-ray phase analysis. It was demonstrated that tungsten and tungstic acid hydrate react with products of polysiloxane decomposition to give WO3, WO2, δ-WO2, and Na2WO4 under extreme conditions (T > 1600 K and pressures in the range of 3–8 GPa) near the surface of the microspheres. The observation of irregularly shaped droplets and “solidified foam” structures found on the inner surface of collapsing microspheres suggests that the formation of filamentous structures is preceded by high-temperature reactions involving products of high-temperature pyrolysis of polysiloxane and tungsten compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Garnett, L. Mai, P. Yang, Chem. Rev., 2019, 119, 8955; DOI: https://doi.org/10.1021/acs.chemrev.9b00423.

    Article  CAS  PubMed  Google Scholar 

  2. H. O. Pierson, Handbook of Chemical Vapor Deposition: Principles, Technology and Applications, William Andrew, 1999, 506 pp.

  3. L. Güniat, P. Caroff, A. Fontcuberta i Morral, Chem. Rev., 2019, 119, 8958; DOI: https://doi.org/10.1021/acs.chemrev.8b00649.

    Article  PubMed  Google Scholar 

  4. C. R. Martin, Science, 1994, 266, 1961; DOI: https://doi.org/10.1126/science.266.5193.1961.

    Article  CAS  PubMed  Google Scholar 

  5. C. A. Barbero, D. F. Acevedo, E. Yslas, M. Broglia, D. O. Peralta, E. Frontera, R. Rivero, C. R. Rivarola, M. Bertuzzi, V. Rivarola, M. C. Miras, Mol. Cryst. Liq. Cryst., 2010, 521, 214; DOI: https://doi.org/10.1080/15421401003720074.

    Article  CAS  Google Scholar 

  6. J. Xue, T. Wu, Y. Dai, Y. Xia, Chem. Rev., 2019, 119, 5298; DOI: https://doi.org/10.1021/acs.chemrev.8b00593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. V. E. Fortov, Lectures on the Physics of Extreme States of Matter, IOP Publ., Bristol, 2019, 203 pp.

    Book  Google Scholar 

  8. V. V. Boldyrev, A. P. Voronin, N. Z. Lyakhov, B. K. Kanmov, Zhurn. Vsesoyuz. khim. ob-va im. D. I. Mendeleeva [Mendeleev Chem. J.] 1990, 35, 540 (in Russian).

    CAS  Google Scholar 

  9. A. A. Antipov, S. M. Arakelian, D. N. Bukharov, S. V. Kutrovskaya, A. O. Kucherik, D. S. Nogtev, T. E. Itina, Bull. Russ. Acad. Sci.: Physics, 2016, 80, 351; DOI: https://doi.org/10.3103/S1062873816040031.

    Article  CAS  Google Scholar 

  10. N. A. Inogamov, Yu. V. Petrov, V. A. Khokhlov, V. V. Zhakhovskii, High Temp., 2020, 58, 632; DOI: https://doi.org/10.1134/S0018151X20040045.

    Article  CAS  Google Scholar 

  11. L. Mulko, M. Soldera, A. F. Lasagni, Nanophotonics, 2022, 11, 203; DOI: https://doi.org/10.1515/nanoph-2021-0591.

    Article  CAS  Google Scholar 

  12. E. B. Gordon, A. V. Karabulin, S. A. Krasnokutski, V. I. Matyushenko, I. I. Khodos, High Energy Chem., 2017, 51, 245; DOI: https://doi.org/10.1134/S001814391704004X.

    Article  CAS  Google Scholar 

  13. R. A. Andrievski, Phys.–Usp., 2014, 57, 945; DOI: https://doi.org/10.3367/UFNe.0184.201410a.1017.

    Article  CAS  Google Scholar 

  14. A. B. Medvedev, R. F. Trunin, Phys.–Usp., 2012, 55, 773; DOI: https://doi.org/10.3367/UFNe.0182.201208b.0829.

    Article  CAS  Google Scholar 

  15. Yu. M. Milekhin, D. N. Sadovnichii, K. Yu. Shere-metyev, Yu. G. Kalinin, E. D. Kazakov, M. B. Markov, Dokl. Chem., 2019, 487, 184; DOI: https://doi.org/10.1134/S0012500819070085.

    Article  CAS  Google Scholar 

  16. D. N. Sadovnichii, Yu. M. Milekhin, K. Yu. Sheremet’ev, E. D. Kazakov, M. B. Markov, E. B. Savenkov, Russ. J. Appl. Chem., 2022, 95, 88; DOI: https://doi.org/10.1134/S1070427222010128.

    Article  CAS  Google Scholar 

  17. L. I. Rudakov, M. V. Babykin, A. V. Gordeev, B. A. Demidov, V. D. Korolev, E. Z. Tarumov, Generatsiya i fokusirovka silnotochnykh relyativistskikh elektronnykh puchkov (Generation and Focusing of High-Current Relativistic Electron Beams), Energoatomizdat, Moscow, 1990, 280 pp. (in Russian).

    Google Scholar 

  18. L. N. Pankratova, M. G. Zhizhin, L. T. Bugaenko, High Energy Chem., 2005, 39, 382; DOI: https://doi.org/10.1007/s10733-005-0075-5.

    Article  CAS  Google Scholar 

  19. S. S. Batsanov, Russ. Chem. Rev., 1986, 55, 297; DOI: https://doi.org/10.1070/RC2006v075n07ABEH003613.

    Article  Google Scholar 

  20. A. N. Zelikman, Metallurgiya tugoplavkikh redkikh metallov (Metallurgy of Refractory Rare Metals), Metallurgiya, Moscow, 1986, 440 pp. (in Russian).

    Google Scholar 

  21. D. N. Sadovnichii, Yu. M. Milekhin, Yu. G. Kalinin, E. D. Kazakov, K. Yu. Sheremet’ev, M. B. Markov, N. V. Pertsev, D. I. Krutikov, Russ. J. Appl. Chem., 2021, 94, 1134; DOI: https://doi.org/10.1134/S1070427221080152.

    Article  CAS  Google Scholar 

  22. S. S. Ananyev, G. A. Bagdasarov, V. A. Gasilov, S. A. Dan’ko, B. A. Demidov, E. D. Kazakov, Yu. G. Kalinin, A. A. Kurilo, O. G. Ol’khovskaya, M. G. Strizhakov, S. I. Tkachenko, Plasma Phys. Rep., 2017, 43, 726; DOI: https://doi.org/10.1134/S1063780X17070029.

    Article  CAS  Google Scholar 

  23. V. P. Efremov, A. I. Potapenko, High Temp., 2010, 48, 881; DOI: https://doi.org/10.1134/S0018151X10060155.

    Article  CAS  Google Scholar 

  24. G. I. Kannel’, S. V. Razorenov, A. V. Utkin, V. E. Fortov, Udarno-volnovye yavleniya v kondensirovannykh sredakh [Shock Wave Phenomena in Condensed Media], Yanus-K, Moscow, 1996, pp. 128, 149 (in Russian).

    Google Scholar 

  25. A. N. Zubareva A. V. Utkin, V. P. Efremov, Konstruktsii izkompozitsionnykh materialov [Composite Structures], 2016, 3, 45 (in Russian).

    Google Scholar 

  26. S. M. Karakhanov, A. V. Plastinin, D. S. Bordzilovskii, S. A. Bordzilovskii, Comb., Explos., and Shock Waves, 2016, 52, 350; DOI: https://doi.org/10.1134/S0010508216030151.

    Article  Google Scholar 

  27. D. M. Dattelbaum, J. D. Coe, Polymers, 2019, 11, 493; DOI: https://doi.org/10.3390/polym11030493.

    Article  PubMed  PubMed Central  Google Scholar 

  28. M. N. Temnikov, V. G. Vasil’ev, M. I. Buzin, A. M. Muzafarov, Eur. Polym. J., 2020, 130, 109676; DOI: https://doi.org/10.1016/j.eurpolymj.2020.109676.

    Article  CAS  Google Scholar 

  29. Yu. M. Milekhin, A. A. Koptelov, A. I. Koptelov, D. N. Sadovnichii, Trudy XXX Mezhd. konf. “Radiatsionnaya fizika tverdogo tela” [Proc. XXX Int. Conf. “Radiation Physics of Solids”] (Sebastopol, August 24–29, 2020), NII PMT, 2020, p. 121 (in Russian).

  30. B. G. Trusov, Vestn. MGTU im. N. E. Baumana. Ser. Priborostroenie [Herald of the Bauman Moscow State Tech. Univ., Ser. Instrumentation], 2012, 2, 240 (in Russian).

    Google Scholar 

  31. R. Ma, D. Erbb, K. Lu, J. Am. Ceram. Soc., 2018, 38, 4906; DOI: https://doi.org/10.1016/j.jeurceramsoc.2018.07.010.

    Article  CAS  Google Scholar 

  32. S. A. Gromilov, S. A. Kinelovskii, Russ. J. Struct. Chem., 2003, 44, 434; DOI: https://doi.org/10.1023/B:JORY0000009671.41739.f5.

    Article  CAS  Google Scholar 

  33. G. V. Samsonov, G. Sh. Upadkhaya, V. S. Neshpor, Fizicheskoe materialovedenie karbidov [Physical Materials Science of Carbides], Naukova Dumka, Kiev, 1974, p. 90 (in Russian).

    Google Scholar 

  34. A. S. Kurlov, A. I. Gusev, Russ. Chem. Rev., 2006, 75, 617; DOI: https://doi.org/10.1070/RC2006v075n07ABEH003606.

    Article  CAS  Google Scholar 

  35. A. S. Kurlov, A. A. Rempel, Yu. V. Blagoveshenskii, A. V. Samokhin, Yu. V. Tsvetkov, Dokl. Chem., 2011, 439, 213; DOI: https://doi.org/10.1134/S0012500811070068.

    Article  CAS  Google Scholar 

  36. M. I. Alymov, I. P. Borovinskaya, Neorgan. materialy, 2017, 53, 231 [Inorg. Mater. (Engl. Transl.), 2017, 53, 243; DOI: https://doi.org/10.1134/S0020168517030013].

    Google Scholar 

  37. D. V. Kostomarov, Kh. S. Bagdasarov, E. V. Antonov, Dokl. Chem., 2012, 442, 37; DOI: https://doi.org/10.1134/S0012500812020048.

    Article  CAS  Google Scholar 

  38. D. V. Kostomarov, Kh. S. Bagdasarov, E. V. Antonov, Dokl. Chem., 2012, 446, 204; DOI: https://doi.org/10.1134/S0012500812100023.

    Article  CAS  Google Scholar 

  39. Z. Fang, S. Jiao, B. Wang, W. Yin, S. Liu, R. Gao, Z. Liu, G. Pang, S. Feng, Mater. Today Energy, 2017, 6, 146; DOI: https://doi.org/10.1016/j.mtener.2017.09.014.

    Article  Google Scholar 

  40. S. Ke, X. Min, Y. Liu, R. Mi, X. Wu, Z. Huang, M. Fang, Molecules, 2022, 27, 4751; DOI: https://doi.org/10.3390/molecules27154751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. D. S. Venables, M. E. Brown, Thermochimica Acta, 1997, 291, 131; DOI:10.1016/S0040-6031(96)03068-7.

    Article  CAS  Google Scholar 

  42. C. L. Lima, G. D. Saraiva, P. T. C. Freire, M. Maczka, W. Paraguassu, F. F. de Sousae, J. M. Filho, J. Raman Spectrosc., 2011, 42, 799; DOI: https://doi.org/10.1002/jrs.2759.

    Article  CAS  Google Scholar 

  43. D. Spanu, S. Recchia, P. Schmuki, Phys. Status Solidi RRL, 2020, 14, 2000235 DOI: https://doi.org/10.1002/pssr.202000235.

    Article  CAS  Google Scholar 

  44. H. Wang, J. L. Liu, X. X. Wu, S. Q. Zhang, Z. K. Zhang, W. W. Pan, G. Yuan, C. L. Yuan, Y. L. Ren, W. Lei, Nanotechnology, 2020, 31, 274003; DOI: https://doi.org/10.1088/1361-6528/ab8327.

    Article  CAS  PubMed  Google Scholar 

  45. H. Liu, Z. Huang, M. Fang, Y. Liu, X. Wu, J. Cryst. Growth, 2015, 419, 20; DOI: https://doi.org/10.1016/j.jcrysgro.2015.02.085.

    Article  CAS  Google Scholar 

  46. S. C. Chiu, C. W. Huang, Y. Y. Li, J. Phys. Chem. C., 2007, 111, 10294; DOI: https://doi.org/10.1021/jp0687192.

    Article  CAS  Google Scholar 

  47. S.-J. Wang, C.-H. Chen, S.-C. Chang, K.-M. Uang, C.-P. Juan, H.-C. Cheng, Appl. Phys. Lett., 2004, 85, 2358; DOI: https://doi.org/10.1063/1.1791322.

    Article  CAS  Google Scholar 

  48. N. F. Karpovich, M. A. Pugachevskii, N. V. Lebukhova, K. S. Makarevich, Nanotechnologies in Russia, 2015, 10, 741; DOI: https://doi.org/10.1134/S1995078015050092.

    Article  CAS  Google Scholar 

  49. K. V. Mkrtchyan, A. A. Zezin, E. A. Zezina, S. S. Abramchuk, I. A. Baranova, Russ. Chem. Bull., 2020, 69, 1731; DOI: https://doi.org/10.1007/s11172-020-2956-7.

    Article  CAS  Google Scholar 

  50. F. Bai, K. Bian, X. Huang, Z. Wang, H. Fan, Chem. Rev., 2019, 119, 7673; DOI: https://doi.org/10.1021/acs.chemrev.9b00023.

    Article  CAS  PubMed  Google Scholar 

  51. A. V. Ganeev, R. K. Islamgaliev, R. Z. Valiev, Phys. Metals Metallogr., 2014, 115, 139; DOI: https://doi.org/10.1134/S0031918X14020070.

    Article  Google Scholar 

  52. T. Lippert, J. Stebani, J. Ihlemann, O. Nuyken, A. Wokaun, Angew. Makromol. Chem., 1993, 213, 127; DOI: https://doi.org/10.1002/apmc.1993.052130113.

    Article  CAS  Google Scholar 

  53. Th. Lippert, J. Th. Dickinson, Chem. Rev., 2003, 103, 453; DOI: https://doi.org/10.1021/cr010460q.

    Article  CAS  PubMed  Google Scholar 

  54. A. Greiner, J. H. Wendorff, Angew. Chem., Int. Ed., Engl., 2007, 46, 5670; DOI: https://doi.org/10.1002/anie.200604646.

    Article  CAS  PubMed  Google Scholar 

  55. D. N. Sadovnichii, A. P. Tyutnev, Yu. M. Milekhin, Russ. Chem. Bull., 2020, 69, 1607; DOI: https://doi.org/10.1007/s11172-020-2944-y.

    Article  CAS  Google Scholar 

  56. D. N. Sadovnichii, Yu. M. Milekhin, S. A. Malinin, T. L. Vikhornova, A. N. Osavchuk, V. P. Mel’nikov, K. Yu. Sheremet’ev, N. V. Pertsev, Tech. Physics, 2020, 65, 1076; DOI: https://doi.org/10.1134/S1063784220070166.

    Article  CAS  Google Scholar 

  57. Elektricheskie svoystva polimerov [Electric Properties of Polymers], Ed. B. I. Sazhin, Khimiya, Leningrad, 1986, 136 pp. (in Russian).

    Google Scholar 

  58. V. M. Kozhevin, D. A. Yavsin, D. S. Ilyushchenkov, T. N. Rostovshchikova, E. S. Lokteva, S. A. Gurevich, in Sintez, stroenie i svoystva metall/poluprovodnik soderzhashchikh nanostrukturirovannykh kompozitov [Synthesis, Structure, and Properties of Metal/Semiconductor-Containing Nanostructured Composites], Eds L. I. Trakhtenberg and M. Ya. Mel’nikov, Technosphere, Москва, 2016, 436 pp.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. N. Sadovnichii, E. D. Kazakov or M. B. Markov.

Ethics declarations

The authors declare no competing interests.

Additional information

The authors express their gratitude to D. V. Kondratyeva and N. V. Pertseva (Federal Center for Dual-Use Technologies Soyuz) for help in carrying out the work.

No human or animal subjects were used in this research.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, Vol. 72, No. 9, pp. 2048–2059, September, 2023.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadovnichii, D.N., Milekhin, Y.M., Kazakov, E.D. et al. Structure formation in syntactic foam based on metal-coated glass microspheres and polysiloxane under the action of a nanosecond relativistic electron beam. Russ Chem Bull 72, 2048–2059 (2023). https://doi.org/10.1007/s11172-023-3999-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-023-3999-3

Key words

Navigation