Skip to main content
Log in

Application of regression learning for gas chromatographic analysis and prediction of toxicity of organic molecules

  • Full Article
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

An important task of physical chemistry is to predict the properties of chemical compounds from their structure. Prediction of the chromatographic retention allows one to reject false candidates in gas chromatography/mass spectrometry analysis and to elucidate structures of unknown compounds. Immediately after establishing the structure of an unknown analyte, the next task is to predict its properties, in particular, toxicity. In this work, the problem of prediction of gas chromatographic retention is considered in detail. A new method for predicting the retention indices on different stationary phases using regression learning is demonstrated in relation to flavors and fragrances. The achieved accuracy is higher than the accuracy of previously published methods. The median absolute error does not exceed 14 units. In addition, prediction of acute toxicity from the molecular structure is considered. The efficiency of various regression learning methods for predicting retention indices and acute toxicity (median lethal dose) of chemical compounds is compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. M. Vinaixa, E. L. Schymanski, S. Neumann, M. Navarro, R. M. Salek, O. Yanes, TrAC Trends in Analytical Chemistry, 2016, 78, 23; DOI: https://doi.org/10.1016/j.trac.2015.09.005.

    Article  CAS  Google Scholar 

  2. H. Ji, H. Deng, H. Lu, Z. Zhang, Anal. Chem., 2020, 92, 8649; DOI: https://doi.org/10.1021/acs.analchem.0c01450.

    Article  CAS  PubMed  Google Scholar 

  3. S. Stein, Anal. Chem., 2012, 84, 7274; DOI: https://doi.org/10.1021/ac301205z.

    Article  CAS  PubMed  Google Scholar 

  4. D. D. Matyushin, A. Yu. Sholokhova, A. K. Buryak, Anal. Chem., 2020, 92, 11818; DOI: https://doi.org/10.1021/acs.analchem.0c02082.

    Article  CAS  PubMed  Google Scholar 

  5. A. Samokhin, K. Sotnezova, V. Lashin, I. Revelsky, J. Mass Spectrom., 2015, 50, 820; DOI: https://doi.org/10.1002/jms.3591.

    Article  CAS  PubMed  Google Scholar 

  6. A. Samokhin, K. Sotnezova, I. Revelsky, Eur. J. Mass. Spectrom. (Chichester), 2019, 25, 439; DOI: https://doi.org/10.1177/1469066719855503.

    Article  CAS  PubMed  Google Scholar 

  7. J. Zhang, I. Koo, B. Wang, Q.-W. Gao, C.-H. Zheng, X. Zhang, J. Chromatography A, 2012, 1251, 188; DOI: https://doi.org/10.1016/j.chroma.2012.06.036.

    Article  CAS  Google Scholar 

  8. D. D. Matyushin, A. Yu. Sholokhova, A. E. Karnaeva, A. K. Buryak, Chemometrics and Intelligent Laboratory Systems, 2020, 202, 104042; DOI: https://doi.org/10.1016/j.chemolab.2020.104042.

    Article  CAS  Google Scholar 

  9. D. D. Matyushin, A. Yu. Sholokhova, A. K. Buryak, IJMS, 2021, 22, 9194; DOI: https://doi.org/10.3390/ijms22179194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. A. K. Buryak, Russ. Chem. Rev., 2002, 71, 695; DOI: https://doi.org/10.1070/RC2002v071n08ABEH000711.

    Article  CAS  Google Scholar 

  11. A. K. Baryak, A. V. Ul’yanov, Russ. Chem. Bull., 1996, 45, 582; DOI: https://doi.org/10.1007/BF01435786.

    Article  Google Scholar 

  12. D. D. Matyushin, A. N. Ukleina, A. K. Buryak, Prot. Met. Phys. Chem. Surf., 2020, 56, 38; DOI: https://doi.org/10.1134/S2070205119060212.

    Article  CAS  Google Scholar 

  13. D. D. Matyushin, A. K. Buryak, J. Anal. Chem., 2019, 74, 47; DOI: https://doi.org/10.1134/S1061934819070165.

    Article  CAS  Google Scholar 

  14. D. D. Matyushin, A. N. Ukleina, I. A. Polunina, A. K. Buryak, Prot. Met. Phys. Chem. Surf., 2019, 55, 1030; DOI: https://doi.org/10.1134/S2070205119060224.

    Article  CAS  Google Scholar 

  15. C. D. Wick, J. I. Siepmann, W. L. Klotz, M. R. Schure, J. Chromatography A, 2002, 954, 181; DOI: https://doi.org/10.1016/S0021-9673(02)00171-1.

    Article  CAS  Google Scholar 

  16. L. Sun, J. I. Siepmann, W. L. Klotz, M. R. Schure, J. Chromatography A, 2006, 1126, 373; DOI: https://doi.org/10.1016/j.chroma.2006.05.084.

    Article  CAS  Google Scholar 

  17. A. D. Glova, I. V. Volgin, V. M. Nazarychev, S. V. Larin, S. V. Lyulin, A. A. Gurtovenko, RSC Adv., 2019, 9, 38834; DOI: https://doi.org/10.1039/c9ra07325f.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. J. T. Horton, A. E. A. Allen, L. S. Dodda, D. J. Cole, J. Chem. Inf. Model., 2019, 59, 1366; DOI: https://doi.org/10.1021/acs.jcim.8b00767.

    Article  CAS  PubMed  Google Scholar 

  19. J. S. Smith, B. T. Nebgen, R. Zubatyuk, N. Lubbers, C. Devereux, K. Barros, S. Tretiak, O. Isayev, A. E. Roitberg, Nat. Commun, 2019, 10, 2903; DOI: https://doi.org/10.1038/s41467-019-10827-4.

    Article  PubMed  PubMed Central  Google Scholar 

  20. C. W. Yap, J. Comput. Chem., 2011, 32, 1466; DOI: https://doi.org/10.1002/jcc.21707.

    Article  CAS  PubMed  Google Scholar 

  21. O. Farkas, K. Héberger, I. G. Zenkevich, Chemometrics and Intelligent Laboratory Systems, 2004, 72, 173; DOI: https://doi.org/10.1016/j.chemolab.2004.01.012.

    Article  CAS  Google Scholar 

  22. J. L. Durant, B. A. Leland, D. R. Henry, J. G. Nourse, J. Chem. Inf. Comput. Sci., 2002, 42, 1273; DOI: https://doi.org/10.1021/ci010132r.

    Article  CAS  PubMed  Google Scholar 

  23. D. Rogers, M. Hahn, J. Chem. Inf. Model., 2010, 50, 742; DOI: https://doi.org/10.1021/ci100050t.

    Article  CAS  PubMed  Google Scholar 

  24. D. D. Matyushin, A. Yu. Sholokhova, A. K. Buryak, J. Chromatography A, 2019, 1607, 460395; DOI: https://doi.org/10.1016/j.chroma.2019.460395.

    Article  CAS  Google Scholar 

  25. D. D. Matyushin, A. K. Buryak, IEEE Access, 2020, 8, 223140; DOI: https://doi.org/10.1109/ACCESS.2020.3045047.

    Article  Google Scholar 

  26. A. K. Zhokhov, A. Yu. Loskutov, I. V. Rybal’chenko, J. Anal. Chem., 2018, 73, 207; DOI: https://doi.org/10.1134/S1061934818030127.

    Article  CAS  Google Scholar 

  27. T. Vrzal, M. Malečková, J. Olšovská, Analytica Chimica Acta, 2021, 1147, 64; DOI: https://doi.org/10.1016/j.aca.2020.12.043.

    Article  CAS  PubMed  Google Scholar 

  28. C. Qu, B. I. Schneider, A. J. Kearsley, W. Keyrouz, T. C. Allison, J. Chromatography A, 2021, 1646, 462100; DOI: https://doi.org/10.1016/j.chroma.2021.462100.

    Article  CAS  Google Scholar 

  29. D. D. Matyushin, A. Yu. Sholokhova, A. K. Buryak, Sorpchrom, 2019, 19, 630; DOI: https://doi.org/10.17308/sorpchrom.2019.19/2223.

    Article  Google Scholar 

  30. S. E. Stein, V. I. Babushok, R. L. Brown, P. J. Linstrom, J. Chem. Inf. Model., 2007, 47, 975; DOI: https://doi.org/10.1021/ci600548y.

    Article  CAS  PubMed  Google Scholar 

  31. K. Héberger, J. Chromatography A, 2007, 1158, 273; DOI: https://doi.org/10.1016/j.chroma.2007.03.108.

    Article  Google Scholar 

  32. D. D. Matyushin, A. E. Karnaeva, A. K. Buryak, Russ. J. Phys. Chem., 2020, 94, 453; DOI: https://doi.org/10.1134/S003602442003022X.

    Article  CAS  Google Scholar 

  33. Q.-Z. Su, P. Vera, J. Salafranca, C. Nerín, Resources, Conservation and Recycling, 2021, 171, 105640; DOI: https://doi.org/10.1016/j.resconrec.2021.105640.

    Article  CAS  Google Scholar 

  34. Q.-Z. Su, P. Vera, C. Nerín, Q.-B. Lin, H.-N. Zhong, Resources, Conservation and Recycling, 2021, 167, 105365; DOI: https://doi.org/10.1016/j.resconrec.2020.105365.

    Article  CAS  Google Scholar 

  35. K. Mansouri, A. L. Karmaus, J. Fitzpatrick, G. Patlewicz, P. Pradeep, D. Alberga, N. Alepee, T. E. H. Allen, D. Allen, V. M. Alves, C. H. Andrade, T. R. Auernhammer, D. Ballabio, S. Bell, E. Benfenati, S. Bhattacharya, J. V. Bastos, S. Boyd, J. B. Brown, S. J. Capuzzi, Y. Chushak, H. Ciallella, A. M. Clark, V. Consonni, P. R. Daga, S. Ekins, S. Farag, M. Fedorov, D. Fourches, D. Gadaleta, F. Gao, J. M. Gearhart, G. Goh, J. M. Goodman, F. Grisoni, C. M. Grulke, T. Hartung, M. Hirn, P. Karpov, A. Korotcov, G. J. Lavado, M. Lawless, X. Li, T. Luechtefeld, F. Lunghini, G. F. Mangiatordi, G. Marcou, D. Marsh, T. Martin, A. Mauri, E. N. Muratov, G. J. Myatt, D.-T. Nguyen, O. Nicolotti, R. Note, P. Pande, A. K. Parks, T. Peryea, A. H. Polash, R. Rallo, A. Roncaglioni, C. Rowlands, P. Ruiz, D. P. Russo, A. Sayed, R. Sayre, T. Sheils, C. Siegel, A. C. Silva, A. Simeonov, S. Sosnin, N. Southall, J. Strickland, Y. Tang, B. Teppen, I. V. Tetko, D. Thomas, V. Tkachenko, R. Todeschini, C. Toma, I. Tripodi, D. Trisciuzzi, A. Tropsha, A. Varnek, K. Vukovic, Z. Wang, L. Wang, K. M. Waters, A. J. Wedlake, S. J. Wijeyesakere, D. Wilson, Z. Xiao, H. Yang, G. Zahoranszky-Kohalmi, A. V. Zakharov, F. F. Zhang, Z. Zhang, T. Zhao, H. Zhu, K. M. Zorn, W. Casey, N. C. Kleinstreuer, Environ Health Perspect, 2021, 129, 047013; DOI: https://doi.org/10.1289/EHP8495.

    Article  PubMed  PubMed Central  Google Scholar 

  36. C. Rojas, P. R. Duchowicz, P. Tripaldi, R. P. Diez, Chemometrics and Intelligent Laboratory Systems, 2015, 140, 126; DOI: https://doi.org/10.1016/j.chemolab.2014.09.020.

    Article  CAS  Google Scholar 

  37. C. Rojas, P. R. Duchowicz, P. Tripaldi, R. Pis Diez, J. Chromatography A, 2015, 1422, 277; DOI: https://doi.org/10.1016/j.chroma.2015.10.028.

    Article  CAS  Google Scholar 

  38. W. Jennings, T. Shibamoto, Qualitative Analysis Flavor Fragrance Volatiles by Glass Capillary Gas Chromatography, Academic Press, San Francisco, 1980, 472 pp.; ISBN: 978-0-12-384250-3.

    Google Scholar 

  39. E. L. Willighagen, J. W. Mayfield, J. Alvarsson, A. Berg, L. Carlsson, N. Jeliazkova, S. Kuhn, T. Pluskal, M. Rojas-Chertó, O. Spjuth, G. Torrance, C. T. Evelo, R. Guha, C. Steinbeck, J. Cheminform., 2017, 9, 33; DOI: https://doi.org/10.1186/s13321-017-0220-4.

    Article  PubMed  PubMed Central  Google Scholar 

  40. A. P. Bento, A. Hersey, E. Félix, G. Landrum, A. Gaulton, F. Atkinson, L. J. Bellis, M. De Vej, A. R. Leach, J. Cheminform., 2020, 12, 51; DOI: https://doi.org/10.1186/s13321-020-00456-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. C.-C. Chang, C.-J. Lin, ACM Trans. Intell. Syst. Technol., 2011, 2, 1; DOI: https://doi.org/10.1145/1961189.1961199.

    Article  Google Scholar 

  42. K. T. Nguyen, L. C. Blum, R. van Deursen, J.-L. Reymond, ChemMedChem, 2009, 4, 1803; DOI: https://doi.org/10.1002/cmdc.200900317.

    Article  CAS  PubMed  Google Scholar 

  43. E. S. Fedorova, D. D. Matyushin, I. V. Plyushchenko, A. N. Stavrianidi, A. K. Buryak, J. Chromatography A, 2022, 1664, 462792; DOI: https://doi.org/10.1016/j.chroma.2021.462792.

    Article  CAS  Google Scholar 

  44. M. Fernández-Delgado, M. S. Sirsat, E. Cernadas, S. Alawadi, S. Barro, M. Febrero-Bande, Neural Networks, 2019, 111, 11; DOI: https://doi.org/10.1016/j.neunet.2018.12.010.

    Article  PubMed  Google Scholar 

  45. L. Yang, A. Shami, Neurocomputing, 2020, 415, 295; DOI: https://doi.org/10.1016/j.neucom.2020.07.061.

    Article  Google Scholar 

  46. B. Schölkopf, A. J. Smola, R. C. Williamson, P. L. Bartlett, Neural Computation, 2000, 12, 1207; DOI: https://doi.org/10.1162/089976600300015565.

    Article  PubMed  Google Scholar 

  47. A. D. Shagina, E. P. Kramarova, D. V. Tarasenko, D. I. Gonchar, D. N. Lyakhman, A. A. Lagunin, K. A. Sobyanin, T. A. Shmigol’, Yu. I. Baukov, Vad. V. Negrebetsky, Russ. Chem. Bull., 2021, 70, 479; DOI: https://doi.org/10.1007/s11172-021-3112-8.

    Article  CAS  Google Scholar 

  48. O. A. Myshkina, S. Yu. Balandina, R. R. Makhmudov, M. V. Dmitriev, N. Yu. Lisovenko, Russ. Chem. Bull., 2021, 70, 1408; DOI: https://doi.org/10.1007/s11172-021-3232-1.

    Article  CAS  Google Scholar 

  49. A. O. Pittet, D. E. Hruza, J. Agric. Food Chem., 1974, 22, 264; DOI: https://doi.org/10.1021/jf60192a009.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. D. Matyushin.

Additional information

Aleksei Konstantinovich Buryak, born in 1960, Director of the A. N. Frumkin Institute of Physical Chemistry and Electrochemistry of RAS, Corresponding Member of the Russian Academy of Sciences, Doctor of Chemical Sciences, Professor; he was awarded the medal “For the creative contribution to the design of ground space infrastructure facilities” and the rank Honorary Worker of Science and High Technology of the Russian Federation. A. K. Buryak specializes in the physical chemistry and technology of surface phenomena and inorganic materials; he is the author of 342 scientific publications and 30 patents. The key scientific results of A. K. Buryak include the development of a set of physicochemical methods and conduction of a series of studies of the surfaces of inorganic materials for predicting their reactivity. This made it possible to develop, patent, and practically implement processes for purification, modification, and corrosion protection of the construction materials used in ecology, petrochemistry, and rocket engineering. A. K. Buryak supervised eleven PhD Theses. He is Deputy Editor-in-Chief of the journals Fizicheskaya Khimiya (Russian Journal of Physical Chemistry) and Sorbtsionnye i Khromatograficheskie Protsessy (Sorption and Chromatographic Processes), Chairman of the Dissertation Council in Physical Chemistry, Deputy Chairman of the Academic Council of A. N. Frumkin Institute of Physical Chemistry and Electrochemistry of RAS, Co-chairman of the series of conferences “Kinetics and Dynamics of Exchange Processes” (2012–2019).

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, Vol. 72, No. 2, pp. 482–492, February, 2023.

No human or animal subjects were used in this research.

The authors declare no competing interests.

This study was financially supported by the Ministry of Higher Education and Science of the Russian Federation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matyushin, D.D., Buryak, A.K. Application of regression learning for gas chromatographic analysis and prediction of toxicity of organic molecules. Russ Chem Bull 72, 482–492 (2023). https://doi.org/10.1007/s11172-023-3811-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-023-3811-2

Key words

Navigation