Skip to main content
Log in

Substituted chalcones with different positions of the isobornyl substituent: the synthesis and antioxidant activity

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

A series of new substituted chalcones with different positions of the isobornyl substituent in aromatic rings were synthesized in moderate and high yields by condensation of O-methoxy- and O-allyloxy derivatives of acetophenone with various benzaldehyde derivatives in the presence of sodium hydride in DMF. It was established that the presence of two allyloxy groups in the acylated derivatives of terpenophenols favors an increase in the yield of the substituted chalcone. A comparative evaluation of the antioxidant properties of the isobornylchalcones obtained was performed. It was shown that all compounds synthesized in this work exhibit pronounced antioxidant activity; however, particular characteristics depend strongly on the model system used. It was established that the presence, number, and positions of methoxy groups in the A- and B-rings are of importance for the implementation of the antioxidant activity of isobornylchalcones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Saxena, in Aging: Oxidative Stress and Dietary Antioxidants, Ed. V. R. Preedy, Academic Press, Oxford, 2014, p. 49; DOI: https://doi.org/10.1016/B978-0-12-405933-7.00005-6.

  2. A. M. Pisoschi, A. Pop, Eur. J. Med. Chem., 2015, 97, 55; DOI: https://doi.org/10.1016/j.ejmech.2015.04.040.

    Article  CAS  Google Scholar 

  3. N. A. Al Zahrani, R. M. El-Shishtawy, M. M. Elaasser, A. M. Asiri, Molecules, 2020, 25, 4566; DOI: https://doi.org/10.3390/molecules25194566.

    Article  CAS  Google Scholar 

  4. G. Yang, H. E. Lee, S. H. Yeon, H. C. Kang, Y. Y. Cho, H. S. Lee, C. C. Zouboulis, S. H. Han, J. H. Lee, J. Y. Lee, Phytotherapy Res., 2018, 32, 2551; DOI: https://doi.org/10.1002/ptr.6195.

    Article  CAS  Google Scholar 

  5. Z. Rozmer, P. Perjési, Phytochem. Rev., 2016, 15, 87; DOI: https://doi.org/10.1007/s11101-014-9387-8.

    Article  CAS  Google Scholar 

  6. V. R. D. Pereira, I. J. A. Junior, L. S. Silveira, R. B. Geraldo, P. F. Pinto, F. S. Teixeira, M. C. Salvadori, M. P. Silva, L. A. Alves, P. V. S. Z. Capriles, A. C. Almeida, E. S. Coimbra, P. L. S. Pinto, M. R. C. Couri, J. Moraes, A. A. S. Filho, Chem. Biodiversity, 2018, 15, e1800398; DOI: https://doi.org/10.1002/cbdv.201800398.

    Google Scholar 

  7. M. J. Mphahlele, S. J. Zamisa, T. M. El-Gogary, J. Mol. Struct., 2021, 1245, 131090; DOI: https://doi.org/10.1016/j.molstruc.2021.131090.

    Article  CAS  Google Scholar 

  8. T. I. Adelusi, G. R. Akinbolaji, X. Yin, K. S. Ayinde, O. T. Olaoba, Eur. J. Pharmacol., 2021, 891, 173695; DOI: https://doi.org/10.1016/j.ejphar.2020.173695.

    Article  CAS  Google Scholar 

  9. T. I. Adelusi, L. Du, A. Chowdhury, G. Xiaoke, Q. Lu, X. Yin, Life Sci., 2021, 284, 118982; DOI: https://doi.org/10.1016/j.lfs.2020.118982.

    Article  CAS  Google Scholar 

  10. R. M. Hassan, M. E. Aboutabl, M. Bozzi, M. F. El-Behairy, A. M. El Kerdawy, B. Sampaolese, C. Desiderio, F. Vincenzoni, F. Sciandra, I. A. Y. Ghannam, Bioorg. Chem., 2021, 115, 105170; DOI: https://doi.org/10.1016/j.bioorg.2021.105170.

    Article  CAS  Google Scholar 

  11. S. Ammaji, S. Masthanamma, R. R. Bhandare, S. Annadurai, A. Basha Shaik, Arab. J. Chem., 2022, 15, 103581; DOI: https://doi.org/10.1016/j.arabjc.2021.103581.

    Article  CAS  Google Scholar 

  12. O. A. Nurkenov, M. K. Ibraev, M. B. Isabaeva, I. A. Schepetkin, A. I. Khlebnikov, T. M. Seilkhanov, A. E. Arinova, Russ. J. Gen. Chem., 2019, 89, 1360; DOI: https://doi.org/10.1134/S0044460X19070023.

    Article  CAS  Google Scholar 

  13. I. S. Odin, S. Cao, D. Hughes, E. V. Zamaratskii, Yu. P. Zarubin, P. P. Purygin, A. A. Golovanov, S. S. Zlotskii, Dokl. Chem., 2020, 492, 89; DOI: https://doi.org/10.1134/S0012500820360021.

    Article  CAS  Google Scholar 

  14. E. V. Buravlev, O. G. Shevchenko, A. V. Kutchin, Russ. Chem. Bull., 2021, 70, 183; DOI: https://doi.org/10.1007/s11172-021-3075-9.

    Article  CAS  Google Scholar 

  15. E. V. Buravlev, I. V. Fedorova, O. G. Shevchenko, A. V. Kutchin, Russ. Chem. Bull., 2020, 69, 1573; DOI: https://doi.org/10.1007/s11172-020-2937-x.

    Article  CAS  Google Scholar 

  16. N. A. Zefirov, A. V. Mamaeva, A. I. Krasnoperova, Yu. A. Evteeva, E. R. Milaeva, S. A. Kuznetsov, O. N. Zefirova, Russ. Chem. Bull., 2021, 70, 549; DOI: https://doi.org/10.1007/s11172-021-3123-5.

    Article  CAS  Google Scholar 

  17. P. M. Sivakumar, P. K. Prabhakar, M. Doble, Med. Chem. Res., 2011, 20, 482; DOI: https://doi.org/10.1007/s00044-010-9342-1.

    Article  CAS  Google Scholar 

  18. B.-T. Kim, K.-Z. O, J.-C. Chun, K. J. Hwang, Bull. Korean. Chem. Soc., 2008, 29, 1125; DOI: https://doi.org/10.5012/bkcs.2008.29.6.1125.

    Article  CAS  Google Scholar 

  19. V. P. Osipova, M. A. Polovinkina, L. R. Telekova, A. V. Velikorodov, N. N. Stepkina, N. T. Berberova, Rus. Chem. Bull., 2020, 69, 504; DOI: https://doi.org/10.1007/s11172-020-2790-y.

    Article  CAS  Google Scholar 

  20. M. A. Polovinkina, V. P. Osipova, A. D. Osipova, N. T. Berberova, A. V. Velikorodov, G. G. Matishov, Dokl. Chem., 2021, 500, 184; DOI: https://doi.org/10.1134/S0012500821090032.

    Article  CAS  Google Scholar 

  21. S. Marquina, M. Maldonado-Santiago, J. N. Sánchez-Carranza, M. Antúnez-Mojica, L. González-Maya, R. S. Razo-Hernández, L. Alvarez, Bioorg. Med. Chem., 2019, 27, 43; DOI: https://doi.org/10.1016/j.bmc.2018.10.045.

    Article  CAS  Google Scholar 

  22. E. Saavedra, H. Del Rosario, I. Brouard, J. Quintana, F. Estévez, Chem. Bio. Int., 2019, 298, 137; DOI: https://doi.org/10.1016/j.cbi.2018.12.010.

    Article  CAS  Google Scholar 

  23. D. K. Mahapatra, S. K. Bharti, V. Asati, Eur. J. Med. Chem., 2015, 98, 69; DOI: https://doi.org/10.1016/j.ejmech.2015.05.004.

    Article  CAS  Google Scholar 

  24. S. A. Popova, E. V. Pavlova, I. Yu. Chukicheva, Russ. Chem. Bull., 2020, 69, 2198; DOI: https://doi.org/10.1007/s11172-020-3022-1.

    Article  CAS  Google Scholar 

  25. S. A. Popova, E. V. Pavlova, I. Yu. Chukicheva, ARKIVOC, 2021, 8, 179; DOI: https://doi.org/10.24820/ark.5550190.p011.471.

    Article  Google Scholar 

  26. S. A. Popova, E. V. Pavlova, O. G. Shevchenko, I. Yu. Chukicheva, A. V. Kutchin, Molecules, 2021, 26, 3579; DOI: https://doi.org/10.3390/molecules26123579.

    Article  CAS  Google Scholar 

  27. S. A. Popova, O. G. Shevchenko, I. Yu. Chukicheva, A. V. Kutchin, Chem. Biodiversity, 2019, 16, e1800317.

    Article  Google Scholar 

  28. S. A. Popova, O. G. Shevchenko, I. Yu. Chukicheva, Chem. Biol. Drug Des., 2021, 00, 1; DOI: https://doi.org/10.1111/cbdd.13955.

    CAS  Google Scholar 

  29. A. V. Samet, O. G. Shevchenko, V. V. Rusak, E. M. Chartov, A. Myshlyavtsev, D. Rusanov, M. N. Semenova, V. V. Semenov, J. Nat. Prod., 2019, 82, 1451.

    Article  CAS  Google Scholar 

  30. I. A. Dvornikova, E. V. Buravlev, O. G. Shevchenko, I. Yu. Chukicheva, A. V. Kutchin, Russ. Chem. Bull., 2021, 70, 2185; DOI: https://doi.org/10.1007/s11172-021-3330-0.

    Article  CAS  Google Scholar 

  31. I. A. Dvornikova, E. V. Buravlev, I. V. Fedorova, O. G. Shevchenko, I. Yu. Chukicheva, A. V. Kutchin, Russ. Chem. Bull., 2019, 68, 1000; DOI: https://doi.org/10.1007/s11172-019-2510-7.

    Article  CAS  Google Scholar 

  32. I. Yu. Chukicheva, E. V. Buravlev, D. V. Belykh, I. S. Khudyaeva, I. V. Fedorova, O. G. Shevchenko, M. A. Maksimova, L. F. Zainullina, Yu. V. Vakhitova, A. V. Kutchin, Russ. Chem. Bull., 2018, 67, 548; DOI: https://doi.org/10.1007/s11172-018-2109-4.

    Article  CAS  Google Scholar 

  33. S. A. Popova, E. V. Pavlova, I. Yu. Chukicheva, Vestn. Bashkirskogo universiteta [Bull. Bashkir Univ.], 2021, 26, 909 (in Russian).

    Article  Google Scholar 

  34. L. Cesari, F. Mutelet, L. Canabady-Rochelle, Industrial Crops & Products, 2019, 129, 480; DOI: https://doi.org/10.1016/j.indcrop.2018.12.010.

    Article  CAS  Google Scholar 

  35. R. Farhoosh, S. Johnny, M. Asnaashari, N. Molaahmadibahraseman, A. Sharif, Food Chem., 2016, 194, 128; DOI: https://doi.org/10.1016/j.foodchem.2015.08.003.

    Article  CAS  Google Scholar 

  36. M. Güra, H. Muglu, M. S. Çavus, A. Güder, H. S. Sayiner, F. Kandemirli, J. Mol. Struct., 2017, 1134, 40; DOI: https://doi.org/10.1016/j.molstruc.2016.12.041.

    Article  Google Scholar 

  37. I. Yu. Chukicheva, I. V. Fedorova, E. V. Buravlev, K. Yu. Suponitskii, A. V. Kuchin, Russ. J. Org. Chem., 2012, 82, 1425; DOI: https://doi.org/10.1134/S1070363212080154.

    CAS  Google Scholar 

  38. W. L. Mendelson, S. Hayden, Synth. Commun., 1996, 26, 603; DOI:.

    Article  CAS  Google Scholar 

  39. K. Sevgi, B. Tepe, C. Sarikurkcu, Food Chem. Toxicol., 2015, 77, 12; DOI: https://doi.org/10.1016/j.fct.2014.12.006.

    Article  CAS  Google Scholar 

  40. S. N. Lim, P. C. K. Cheung, V.E.C. Ooi, P. O. Ang, J. Agric. Food Chem., 2002, 50, 3862; DOI: https://doi.org/10.1021/jf020096b.

    Article  CAS  Google Scholar 

  41. C. I. Acker, R. Brandão, A. R. Rosário, C. W. Nogueira, Environment. Toxicol. Pharmacol., 2009, 28, 280; DOI: https://doi.org/10.1016/j.etap.2009.05.002.

    Article  CAS  Google Scholar 

  42. C.-R. Wu, W.-H. Lin, Y.-C. Hseu, J.-C. Lien, Y.-T. Lin, T.-P. Kuo, H. Ching, Food Chem., 2011, 127, 564; DOI: https://doi.org/10.1016/j.foodchem.2011.01.041.

    Article  CAS  Google Scholar 

  43. J.-S. Kim, Food Nutrit. Sci., 2013, 4, 177; DOI: https://doi.org/10.4236/fns.2013.42025.

    CAS  Google Scholar 

  44. S. T. Stefanello, A. S. Prestes, T. Ogunmoyole, S. M. Salman, R. S. Schwab, C. R. Brender, L. Dornelles, J. B. T. Rocha, F. A. A. Soares, Toxicol. in Vitro, 2013, 27, 1433; DOI: https://doi.org/10.1016/j.tiv.2013.03.001.

    Article  CAS  Google Scholar 

  45. R. Chawla, R. Arora, R. Kumar, A. Sharma, J. Prasad, S. Singh, R. Sagar, P. Chaundhary, S. Shukla, G. Kaur, R. K. Sharma, S. C. Puri, K. L. Dhar, G. Handa, V. K. Gupta, G. N. Qazi, Mol. Cell. Biochem., 2005, 273, 193; DOI: https://doi.org/10.1007/s11010-005-0821-5.

    Article  CAS  Google Scholar 

  46. T. Asakawa, S. Matsushita, Lipids, 1980, 15, 137; DOI: https://doi.org/10.1007/BF02540959.

    Article  CAS  Google Scholar 

  47. J. Takebayashi, J. Chen, A. A. Tai, in Advanced Protocols in Oxidative Stress II (Methods in Molecular Biology, Vol. 594), Ed. D. Armsrtong, Humana Press, New York, Dordrecht, Heidelberg, London, 2010, 594, p. 287.

  48. J. J. M. Van den Berg, J. A. F. Op den Kamp, B. H. Lubin, B. Roelofsen, F. A. Kuypers, Free Radical Biol. Med., 1992, 12, 487; DOI: https://doi.org/10.1016/0891-5849(92)90102-M.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Popova.

Additional information

This work was financially supported by the Russian Science Foundation (Project No. 21-73-20091).

The synthesized compounds were analyzed using the equipment of the Center for Collective Usage “Chemistry” (Institute of Chemistry, Komi Scientific Center, Ural Branch of the Russian Academy of Sciences). The study of the in vitro activity of the compounds was carried out using the equipment of the Center for Collective Usage “Molecular Biology” (Institute of Biology, Komi Scientific Center, Ural Branch of the Russian Academy of Sciences).

Animals from the Scientific Collection of Experimental Animals at the Institute of Biology, Komi Science Center, Ural Branch of the Russian Academy of Sciences (http://www.ckp-rf.ru/usu/471933/) were used. The animals were handled in accordance with the “Regulations on the Vivarium of Experimental Animals” (Protocol No. 1, dated January 24, 2017) taking into account sanitary, hygienic, and bioethical aspects.

The authors declare no competing interests.

Based on the materials of the VI North Caucasus Organic Chemistry Symposium NCOCS-022 (April 18–22, 2022, Stavropol, Russia).

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2383–2394, November, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popova, S.A., Pavlova, E.V., Shevchenko, O.G. et al. Substituted chalcones with different positions of the isobornyl substituent: the synthesis and antioxidant activity. Russ Chem Bull 71, 2383–2394 (2022). https://doi.org/10.1007/s11172-022-3666-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-022-3666-0

Key words

Navigation