Skip to main content
Log in

Colloidal photonic crystals with controlled morphology

  • Reviews
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Colloidal photonic crystals (CPCs) are universal ordered structures widely used in chemistry, physics, materials science, nanotechnology, and other fields of science and technology. In these materials, periodic alternation of elements with different refractive indices leads to the appearance of the so-called photonic bandgap and, as a consequence, to structural coloration. One-dimensional CPCs, also known as distributed Bragg reflectors or Bragg stacks, are used as cavities for distributed feedback lasers, smart dielectric layers, light-emitting transistors, induced tunable filters, etc. This review is concerned with recent advances in the 2D and 3D adaptive design of CPCs. In particular, methods are discussed for changing the morphology and thus the optical properties of CPCs, as well as the most widely used technologies for fabrication of CPCs. In addition, certain approaches used to achieve active tuning of the photonic bandgap are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Pusey, W. van Megen, Nature, 1986, 320, 340; DOI: https://doi.org/10.1038/320340a0.

    Article  CAS  Google Scholar 

  2. A. Imhof, in Nanoscale Materials, Eds L. M. Liz-Marzán, P. V. Kamat, Springer, Boston, 2004, p. 423; DOI: https://doi.org/10.1007/0-306-48108-1_18.

  3. M. S. Ashurov, A. A. Ezhov, T. A. Kazakova, S. O. Klimonsky, J. Phys.: Conf. Ser., 2018, 1124, 1; DOI: https://doi.org/10.1088/1742-6596/1124/5/051008.

    Google Scholar 

  4. A. I. Sadykov, S. E. Kushnir, N. A. Sapoletova, K. S. Napolskii, J. Surf. Invest.: X-Ray, Synchrotron Neutron Techn. (Engl. Transl.), 2020, 1, 42; DOI: https://doi.org/10.1134/S1027451020010139.

    Article  Google Scholar 

  5. S. O. Klimonsky, V. V. Abramova, A. Sinitskii, Y. D. Tretyakov, Russ. Chem. Rev., 2011, 80, 1191; DOI: https://doi.org/10.1070/RC2011v080n12ABEH004237.

    Article  CAS  Google Scholar 

  6. M. Sarollahi, S. J. Bauman, J. Mishler, J. B. Herzog, J. Nanophoton., 2016, 10, 046012; DOI: https://doi.org/10.1117/1.JNP.10.046012.

    Article  Google Scholar 

  7. P. L. Flaugh, S. E. O’Donnell, S. A. Asher, Appl. Spectrosc., 1984, 38, 847; DOI: https://doi.org/10.1366/0003702844554693.

    Article  CAS  Google Scholar 

  8. G. S. Pan, R. Kesavamoorthy, S. A. Asher, Phys. Rev. Lett., 1997, 78, 3860; DOI: https://doi.org/10.1103/PhysRevLett.78.3860.

    Article  CAS  Google Scholar 

  9. A. A. Kozlov, Yu. A. Gavrilov, A. V. Ivanov, A. S. Aksenov, V. R. Flid, Tonkie khimicheskie tekhnologii [Fine Chem. Technol.], 2018, 13, 5; DOI: https://doi.org/10.32362/2410-6593-2018-13-1-5-21 (in Russian).

    CAS  Google Scholar 

  10. E. Yablonovitch, Phys. Rev. Lett., 1987, 58, 2059; DOI: https://doi.org/10.1103/PhysRevLett.58.2059.

    Article  CAS  PubMed  Google Scholar 

  11. S. John, Phys. Rev. Lett., 1987, 58, 2486; DOI: https://doi.org/10.1103/PhysRevLett.58.2486.

    Article  CAS  PubMed  Google Scholar 

  12. C. M. Soukoulis, Photonic Crystals and Light Localization in the 21st Century, Kluwer Academic, Dordrecht, 2001, 605 pp.; DOI: https://doi.org/10.1007/978-94-010-0738-2.

    Book  Google Scholar 

  13. S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, J. Bur, Nature, 1998, 394, 251; DOI: https://doi.org/10.1038/28343.

    Article  CAS  Google Scholar 

  14. J. G. Fleming, S. Y. Lin, Opt. Lett., 1999, 24, 49; DOI: https://doi.org/10.1364/ol.24.000049.

    Article  CAS  PubMed  Google Scholar 

  15. S. Noda, K. Tomoda, N. Yamamoto, A. Chutinan, Science, 2000, 289, 604; DOI: https://doi.org/10.1126/science.289.5479.604.

    Article  CAS  PubMed  Google Scholar 

  16. I. I. Tarhan, G. H. Watson, Phys. Rev. Lett., 1996, 76, 315; DOI: https://doi.org/10.1103/PhysRevLett.76.315.

    Article  CAS  PubMed  Google Scholar 

  17. W. L. Vos, R. Sprik, A. van Blaaderen, A. Imhof, A. Lagendijk, G. H. Wegdam, Phys. Rev. B, 1996, 53, 16231; DOI: https://doi.org/10.1103/physrevb.53.16231.

    Article  CAS  Google Scholar 

  18. A. F. Koenderink, M. Megens, G. van Soest, W. L. Vos, A. Lagendjik, Phys. Lett. A, 2000, 268, 104; DOI: https://doi.org/10.1016/S0375-9601(00)00153-5.

    Article  Google Scholar 

  19. H. Li, B. Cheng, D. Zhang, Phys. Rev. B, 1997, 56, 10734; DOI: https://doi.org/10.1103/PhysRevB.56.10734.

    Article  CAS  Google Scholar 

  20. V. Astratov, Yu. A. Vlasov, O. Karimov, A. Kaplyanskii, Y. Musikhin, N. Bert, V. Bogomolov, A. Prokofiev, Phys. Lett. A, 1996, 222, 349; DOI: https://doi.org/10.1016/0375-9601(96)00669-X.

    Article  CAS  Google Scholar 

  21. H. Miguez, F. Meseguer, C. López, A. Mifsud, J. Moya, L. Vázquez, Langmuir, 1997, 13, 6009; DOI: https://doi.org/10.1021/la970589o.

    Article  CAS  Google Scholar 

  22. M. Allard, E. H. Sargent, E. Kumacheva, O. Kalinina, Opt. Quantum Electron., 2002, 34, 27; DOI: https://doi.org/10.1023/A:1013397721552.

    Article  CAS  Google Scholar 

  23. Y. Takeoka, J. Mater. Chem. C, 2013, 1, 6059; DOI: https://doi.org/10.1039/C3TC30885E.

    Article  CAS  Google Scholar 

  24. D. Men, D. Liu, Y. Li, Sci. Bull., 2016, 61, 1358; DOI: https://doi.org/10.1007/s11434-016-1134-7.

    Article  CAS  Google Scholar 

  25. S. K. Awasthi, U. Malaviya, S. P. Ojha, N. K. Mishra, B. Singh, Prog. Electromagn. Res. B, 2008, 5, 133; DOI: https://doi.org/10.2528/PIERB08021004.

    Article  Google Scholar 

  26. K. Busch, C. R. Physique, 2002, 3, 53; DOI: https://doi.org/10.1016/S1631-0705(02)01292-6.

    Article  CAS  Google Scholar 

  27. K. M. Leung, Y. F. Liu, Phys. Rev. Lett., 1990, 65, 2646; DOI: https://doi.org/10.1103/PhysRevLett.65.2646.

    Article  CAS  PubMed  Google Scholar 

  28. Z. Zhang, S. Satpathy, Phys. Rev. Lett., 1990, 65, 2650; DOI: https://doi.org/10.1103/PhysRevLett.65.2650.

    Article  CAS  PubMed  Google Scholar 

  29. K. M. Ho, C. T. Chan, C. M. Soukoulis, Phys. Rev. Lett., 1990, 65, 3152; DOI: https://doi.org/10.1103/PhysRevLett.65.3152.

    Article  CAS  PubMed  Google Scholar 

  30. W. H. Zachariasen, Theory of X-Ray Diffraction in Crystals, J. Wiley and Sons, New York, 1945.

    Google Scholar 

  31. R. W. James, The Optical Principles of the Diffraction of X-Rays, G. Bell & Sons, London, 1948, 624 pp.; DOI: https://doi.org/10.1107/S0365110X50001476.

    Google Scholar 

  32. P. A. Rundquist, P. Photinos, S. Jagannathan, S. A. Asher, J. Chem. Phys., 1989, 91, 4932; DOI: https://doi.org/10.1063/1.456734.

    Article  CAS  Google Scholar 

  33. Y. Monovoukas, G. G. Fuller, A. P. Gast, J. Chem. Phys., 1990, 93, 8294; DOI: https://doi.org/10.1063/1.459311.

    Article  CAS  Google Scholar 

  34. Y. Monovoukas, A. P. Gast, Langmuir, 1991, 7, 460; DOI: https://doi.org/10.1021/la00051a008.

    Article  CAS  Google Scholar 

  35. K. W. K. Shung, Y. C. Tsai, Phys. Rev. B, 1993, 48, 11265; DOI: https://doi.org/10.1103/PhysRevB.48.11265.

    Article  CAS  Google Scholar 

  36. I. I. Tarhan, G. H. Watson, Phys. Rev. B, 1996, 54, 7593; DOI: https://doi.org/10.1103/PhysRevB.54.7593.

    Article  CAS  Google Scholar 

  37. S. Satpathy, Z. Zhang, M. R. Salehpour, Phys. Rev. Lett., 1990, 64, 1239; DOI: https://doi.org/10.1103/PhysRevLett.64.1239.

    Article  CAS  PubMed  Google Scholar 

  38. M. S. Thijssen, R. Sprik, J. Wijnhoven, M. Megens, T. Narayanan, A. Lagendijk, W. L. Vos, Phys. Rev. Lett., 1999, 83, 2730; DOI: https://doi.org/10.1103/PhysRevLett.83.2730.

    Article  CAS  Google Scholar 

  39. J. Ge, Y. Yin, Angew. Chem., 2011, 50, 1492; DOI: https://doi.org/10.1002/anie.200907091.

    Article  CAS  Google Scholar 

  40. R. Zhang, Q. Wang, X. Zheng, J. Mater. Chem. C, 2018, 6, 3182; DOI: https://doi.org/10.1039/C8TC00202A.

    Article  CAS  Google Scholar 

  41. H. Song, K. Singer, J. Lott, Y. Wu, J. Zhou, J. Andrews, E. Baer, A. Hiltner, C. Weder, J. Mater. Chem., 2009, 19, 7520; DOI: https://doi.org/10.1039/B909348F.

    Article  CAS  Google Scholar 

  42. A. Chiasera, C. Meroni, F. Scotognella, Y. Boucher, G. Galzerano, A. Lukowiak, D. Ristic, G. Speranza, S. Valligatla, S. Varas, L. Zur, M. Ivanda, G. C. Righini, S. Taccheo, R. Ramponi, M. Ferrari, Opt. Mater., 2019, 87, 107; DOI: https://doi.org/10.1016/j.optmat.2018.04.057.

    Article  CAS  Google Scholar 

  43. M. Shaban, A. M. Ahmed, E. Abdel-Rahman, H. Hamdy, Sci. Rep., 2017, 7, 41983; DOI: https://doi.org/10.1038/srep41983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Y. Boucher, A. Chiasera, M. Ferrari, G. C. Righini, Opt. Mater., 2009, 31, 1306; DOI: https://doi.org/10.1016/j.optmat.2008.10.028.

    Article  CAS  Google Scholar 

  45. K. Regi’nski, J. Muszalski, M. Bugajski, T. Ochalski, J. Kubica, M. Zbroszczyk, J. Katcki, J. Ratajczak, Thin Solid Films, 2000, 367, 290; DOI: https://doi.org/10.1016/S0040-6090(00)00690-8.

    Article  Google Scholar 

  46. J.-G. Rousset, J. Kobak, T. Slupinski, T. Jakubczyk, P. Stawicki, E. Janik, M. Tokarczyk, G. Kowalski, M. Nawrocki, W. Pacuski, J. Cryst. Growth, 2013, 378, 266; DOI: https://doi.org/10.48550/arXiv.1210.1933.

    Article  CAS  Google Scholar 

  47. L. Passoni, L. Criante, F. Fumagalli, F. Scotognella, G. Lanzani, F. Di Fonzo, ACS Nano, 2014, 8, 12167; DOI: https://doi.org/10.1021/nn5037202.

    Article  CAS  PubMed  Google Scholar 

  48. M. E. Calvo, S. Colodrero, N. Hidalgo, G. Lozano, C. López-López, O. Sánchez-Sobrado, H. Míguez, Energy Environ. Sci., 2011, 4, 4800; DOI: https://doi.org/10.1039/C1EE02081A.

    Article  Google Scholar 

  49. L. Xiao, Y. Lv, J. Lin, Y. Hu, W. Dong, X. Guo, Y. Fan, N. Zhang, J. Zhao, Y. Wang, X. Liu, Adv. Opt. Mater., 2018, 6, 6; DOI: https://doi.org/10.1002/adom.201700791.

    Google Scholar 

  50. G. M. Paternò, L. Moscardi, S. Donini, D. Ariodanti, I. Kriegel, M. Zani, E. Parisini, F. Scotognella, G. Lanzani, J. Phys. Chem. Lett., 2019, 10, 4980; DOI: https://doi.org/10.1021/acs.jpclett.9b01612.

    Article  PubMed  Google Scholar 

  51. P. Lova, G. Manfredi, L. Boarino, A. Comite, M. Laus, M. Patrini, F. Marabelli, C. Soci, D. Comoretto, ACS Photonics, 2015, 2, 537; DOI: https://doi.org/10.1021/ph500461w.

    Article  CAS  Google Scholar 

  52. S. Y. Choi, M. Mamak, G. von Freymann, N. Chopra, G. A. Ozin, Nano Lett., 2006, 6, 2456; DOI: https://doi.org/10.1021/nl061580m.

    Article  CAS  PubMed  Google Scholar 

  53. L. D. Bonifacio, B. V. Lotsch, D. P. Puzzo, F. Scotognella, G. A. Ozin, Adv. Mater., 2009, 21, 1641; DOI: https://doi.org/10.1002/adma.200802348.

    Article  CAS  Google Scholar 

  54. T. Karrock, M. Paulsen, M. Gerken, Beilstein J. Nanotechnol., 2017, 8, 203; DOI: https://doi.org/10.3762/bjnano.8.22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Z. Wang, J. Zhang, J. Li, J. Xie, Y. Li, S. Liang, Z. Tian, C. Li, Z. Wang, T. Wang, H. Zhang, B. Yang, J. Mater. Chem., 2011, 21, 1264; DOI: https://doi.org/10.1039/C0JM02655G.

    Article  CAS  Google Scholar 

  56. L. Moscardi, G. M. Paterno, A. Chiasera, R. Sorrentino, F. Marangi, I. Kriegel, G. Lanzani, F. Scotognella, J. Mater. Chem. C, 2020, 8, 13019; DOI: https://doi.org/10.1039/D0TC02437F.

    Article  CAS  Google Scholar 

  57. A. J. Smith, C. Wang, D. Guo, C. Sun, J. Huang, Nat. Commun., 2014, 5, 5517; DOI: https://doi.org/10.1038/ncomms6517.

    Article  CAS  PubMed  Google Scholar 

  58. S. Nootchanat, A. Pangdam, R. Ishikawa, K. Wongravee, K. Shinbo, K. Kato, F. Kaneko, S. Ekgasit, A. Baba, Nanoscale, 2017, 9, 4963; DOI: https://doi.org/10.1039/C6NR09951C.

    Article  CAS  PubMed  Google Scholar 

  59. B. Zhang, J. Cui, J. Duan, M. Cui, Opt. Laser Technol., 2017, 92, 206; DOI: https://doi.org/10.1016/j.optlastec.2016.12.030.

    Article  CAS  Google Scholar 

  60. A. T. Saito, M. Nakajima, Y. Miyamura, K. Sogo, Y. Ishikawa, Y. Hirai, Nanoengineering: Fabrication, Properties, Optics, and Devices III, 2006, 6327, 63270Z–1; DOI: https://doi.org/10.1117/12.679979.

    Google Scholar 

  61. C.-K. Nien, H. H. Yu, Mater. Chem. Phys., 2019, 227, 191; DOI: https://doi.org/10.1016/j.matchemphys.2019.01.059.

    Article  CAS  Google Scholar 

  62. H. Fudouzi, T. Sawada, Langmuir, 2006, 22, 1365; DOI: https://doi.org/10.1021/la0521037.

    Article  CAS  PubMed  Google Scholar 

  63. M. Ben-Moshe, V. L. Alexeev, S. A. Asher, Anal. Chem., 2006, 78, 5149; DOI: https://doi.org/10.1021/ac060643i.

    Article  CAS  PubMed  Google Scholar 

  64. C.-W. Chen, C.-C. Li, H.-C. Jau, L.-C. Yu, C.-L. Hong, D.-Y. Guo, C.-T. Wang, T.-H. Lin, ACS Photonics, 2015, 2, 1524; DOI: https://doi.org/10.1021/acsphotonics.5b00314.

    Article  CAS  Google Scholar 

  65. C. Wang, F. Li, Y. Bi, W. Guo, Adv. Mater. Interfaces, 2019, 6, 1900556; DOI: https://doi.org/10.1002/admi.201900556.

    Article  CAS  Google Scholar 

  66. M. Li, F. He, Q. Liao, J. Liu, L. Xu, L. Jiang, Y. Song, S. Wang, D. Zhu, Angew. Chem., 2008, 120, 7368; DOI: https://doi.org/10.1002/anie.200801998.

    Article  Google Scholar 

  67. E. P. Chan, J. J. Walish, E. L. Thomas, C. M. Stafford, Adv. Mater., 2011, 23, 4702; DOI: https://doi.org/10.1002/adma.201102662.

    Article  CAS  PubMed  Google Scholar 

  68. A. C. Arsenault, D. P. Puzzo, I. Manners, G. A. Ozin, Nat. Photonics, 2007, 1, 468; DOI: https://doi.org/10.1038/nphoton.2007.140.

    Article  CAS  Google Scholar 

  69. J. Zhou, T. Zhou, J. Li, K. He, Z. Qiu, B. Qiu, Z. Zhang, Opt. Express, 2017, 25, 23645; DOI: https://doi.org/10.1364/OE.25.023645.

    Article  CAS  PubMed  Google Scholar 

  70. K. Ueno, K. Matsubara, M. Watanabe, Y. Takeoka, Adv. Mater., 2007, 19, 2807; DOI: https://doi.org/10.1002/adma.200700159.

    Article  CAS  Google Scholar 

  71. T. D. Nguyen, L. P. Yeo, A. J. Ong, W. Zhiwei, D. Mandler, S. Magdassi, A. I. Y. Tok, Mater. Today Energy, 2020, 18, 100496; DOI: https://doi.org/10.1016/j.mtener.2020.100496.

    Article  CAS  Google Scholar 

  72. S. Kubo, Z.-Z. Gu, K. Takahashi, Y. Ohko, O. Sato, A. Fujishima, J. Am. Chem. Soc., 2002, 124, 10950; DOI: https://doi.org/10.1021/ja026482r.

    Article  CAS  PubMed  Google Scholar 

  73. N. Akamatsu, K. Hisano, R. Tatsumi, M. Aizawa, C. J. Barrett, A. Shishido, Soft Matter, 2017, 13, 7486; DOI: https://doi.org/10.1039/C7SM01287J.

    Article  CAS  PubMed  Google Scholar 

  74. S.-L. Kuai, G. Bader, P. V. Ashrit, Appl. Phys. Lett., 2005, 86, 221110; DOI: https://doi.org/10.1063/1.1929079.

    Article  Google Scholar 

  75. N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, K. Nagayama, Nature, 1993, 361, 26; DOI: https://doi.org/10.1038/361026a0.

    Article  Google Scholar 

  76. P. Jiang, J. F. Bertone, K. S. Hwang, V. L. Colvin, Chem. Mater., 1999, 11, 2132; DOI: https://doi.org/10.1021/cm990080%2B.

    Article  CAS  Google Scholar 

  77. Yu. A. Vlasov, X.-Z. Bo, J. C. Sturm, D. J. Norris, Nature, 2001, 414, 289; DOI: https://doi.org/10.1038/35104529.

    Article  CAS  PubMed  Google Scholar 

  78. J. F. Bertone, P. Jiang, K. S. Hwang, D. M. Mittleman, V. L. Colvin, Phys. Rev. Lett., 1999, 83, 300; DOI: https://doi.org/10.1103/PhysRevLett.83.300.

    Article  CAS  Google Scholar 

  79. K. P. Velikov, A. Moroz, A. van Blaaderen, Appl. Phys. Lett., 2002, 80, 49; DOI: https://doi.org/10.1063/1.1431698.

    Article  CAS  Google Scholar 

  80. M. E. Turner, T. J. Trentler, V. L. Colvin, Adv. Mater., 2001, 13, 180; DOI: https://doi.org/10.1002/1521-4095(200102)13:3<180::AID-ADMA180>3.0.CO;2-Y.

    Article  CAS  Google Scholar 

  81. S. H. Park, D. Qin, Y. Xia, Adv. Mater., 1998, 10, 1028; DOI: https://doi.org/10.1002/(SICI)1521-4095(199809)10:13<1028::AID-ADMA1028>3.0.CO;2-P.

    Article  CAS  Google Scholar 

  82. S. H. Park, Y. Xia, Langmuir, 1999, 15, 266; DOI: https://doi.org/10.1021/la980658e.

    Article  CAS  Google Scholar 

  83. B. Gates, D. Qin, Y. Xia, Adv. Mater., 1999, 11, 466; DOI: https://doi.org/10.1002/(SICI)1521-4095(199904)11%3A6<466%3A% 3AAID-ADMA466>3.0.CO%3B2-E.

    Article  CAS  Google Scholar 

  84. M. Trau, D. A. Saville, I. A. Aksay, Science, 1996, 272, 706; DOI: https://doi.org/10.1126/science.272.5262.706.

    Article  CAS  PubMed  Google Scholar 

  85. M. Holgado, F. García-Santamaría, A. Blanco, M. Ibisate, A. Cintas, H. Míguez, C. J. Serna, C. Molpeceres, J. Requena, A. Mifsud, Langmuir, 1999, 15, 4701; DOI: https://doi.org/10.1021/la990161k.

    Article  CAS  Google Scholar 

  86. R. C. Hayward, D. A. Saville, I. A. Aksay, Nature, 2000, 404, 56; DOI: https://doi.org/10.1038/35003530.

    Article  CAS  PubMed  Google Scholar 

  87. A. L. Rogach, N. A. Kotov, D. S. Koktysh, J. W. Ostrander, G. A. Ragoisha, Chem. Mater., 2000, 12, 2721; DOI: https://doi.org/10.1021/cm000274l.

    Article  CAS  Google Scholar 

  88. U. Dassanayake, S. Fraden, A. van Blaaderen, J. Chem. Phys., 2000, 112, 3851; DOI: https://doi.org/10.1063/1.480933.

    Article  CAS  Google Scholar 

  89. S. John, Phys. Rev. Lett., 1984, 53, 2169; DOI: https://doi.org/10.1103/PhysRevLett.53.2169.

    Article  Google Scholar 

  90. B. T. Rosner, G. J. Schneider, G. H. Watson, J. Opt. Soc. Am. B, 1998, 15, 2654; DOI: https://doi.org/10.1364/JOSAB.15.002654.

    Article  CAS  Google Scholar 

  91. R. D. Pradhan, I. I. Tarhan, G. H. Watson, Phys. Rev. B, 1996, 54, 13721; DOI: https://doi.org/10.1103/PhysRevB.54.13721.

    Article  CAS  Google Scholar 

  92. Z. Y. Li, Z. Q. Zhang, Phys. Rev. B, 2000, 62, 1516; DOI: https://doi.org/10.1103/PhysRevB.62.1516.

    Article  CAS  Google Scholar 

  93. Z. Y. Li, Z. Q. Zhang, Adv. Mater., 2001, 13, 433; DOI: https://doi.org/10.1002/1521-4095(200103)13:6<433::AID-ADMA433>3.0.CO;2-O.

    Article  CAS  Google Scholar 

  94. V. Yannopapas, N. Stefanou, A. Modinos, Phys. Rev. Lett., 2001, 86, 4811; DOI: https://doi.org/10.1103/PhysRevLett.86.4811.

    Article  CAS  PubMed  Google Scholar 

  95. R. Biswas, M. M. Sigalas, G. Subramania, C. M. Soukoulis, K. M. Ho, Phys. Rev. B, 2000, 61, 4549; DOI: https://doi.org/10.1103/PhysRevB.61.4549.

    Article  CAS  Google Scholar 

  96. H. Miguez, F. Meseguer, C. Lopez-Tejeira, J. Sanchez-Dehesa, Adv. Mater., 2001, 13, 393; DOI: https://doi.org/10.1002/1521-4095(200103)13:6<393::AID-ADMA393>3.0.CO;2-4.

    Article  CAS  Google Scholar 

  97. L. Moscardi, G. Lanzani, G. M. Paternò, F. Scotognella, Appl. Sci., 2021, 11, 1; DOI: https://doi.org/10.3390/app11052119.

    Article  Google Scholar 

  98. K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, M. Ozaki, Appl. Phys. Lett., 1999, 75, 932; DOI: https://doi.org/10.1063/1.124558.

    Article  CAS  Google Scholar 

  99. Yu. A. Vlasov, N. Yao, D. J. Norris, Adv. Mater., 1999, 11, 165; DOI: https://doi.org/10.1002/(SICI)1521-4095(199902)11:2<165::AID-ADMA165>3.0.CO;2-3.

    Article  CAS  Google Scholar 

  100. G. Mayonado, S. M. Mian, V. Robbiano, F. Cacialli, in Proc. of the 2015 Conf. on “Laboratory Instruction Beyond the First Year” (College Park, USA, July 22–24, 2015), 2015, 60 pp.; DOI: https://doi.org/10.1119/bfy.2015.pr.015.

  101. G. A. Niklasson, C. G. Granqvist, J. Appl. Phys., 1984, 55, 3382; DOI: https://doi.org/10.1063/1.333386.

    Article  CAS  Google Scholar 

  102. K. Zhong, J. Li, L. Liu, S. van Cleuvenbergen, K. Song, K. Clays, Adv. Mater., 2018, 30, 1707246; DOI: https://doi.org/10.1002/adma.201707246.

    Article  Google Scholar 

  103. Z. Wang, J. Zhang, J. Xie, C. Li, Y. Li, S. Liang, Z. Tian, T. Wang, H. Zhang, H. Li, W. Xu, B. Yang, Adv. Funct. Mater., 2010, 20, 3784; DOI: https://doi.org/10.1002/adfm.201001195.

    Article  CAS  Google Scholar 

  104. M. M. Thomas, P. R. Chandran, V. V. Vipin, A. P. Mohamed, P. Kingshott, S. Pillai, React. Funct. Polym., 2021, 158, 104779; DOI: https://doi.org/10.1016/j.reactfunctpolym.2020.104779.

    Article  CAS  Google Scholar 

  105. D. Yan, R. Li, W. Lu, C. Piao, L. Qiu, Z.-H. Meng, S. Wang, Analyst, 2018, 144, 1892; DOI: https://doi.org/10.1039/C8AN01236A.

    Article  Google Scholar 

  106. A. Lonergan, C. Hu, C. O’Dwyer, Phys. Rev. Mater., 2020, 4, 065201; DOI: https://doi.org/10.1103/PhysRevMaterials.4.065201.

    Article  CAS  Google Scholar 

  107. A. C. Sharma, T. Jana, R. Kesavamoorthy, L. Shi, M. A. Virji, A. D. N. Finegold, S. A. Asher, J. Am. Chem. Soc., 2004, 126, 2971; DOI: https://doi.org/10.1021/ja038187s.

    Article  CAS  PubMed  Google Scholar 

  108. L. Nucara, V. Piazza, F. Greco, V. Robbiano, V. Cappello, M. Gemmi, F. Cacialli, V. Mattoli, ACS Appl. Mater. Interfaces, 2017, 9, 4818; DOI: https://doi.org/10.1021/acsami.6b14455.

    Article  CAS  PubMed  Google Scholar 

  109. M. Honda, T. Seki, Y. Takeoka, Adv. Mater., 2009, 21, 1801; DOI: https://doi.org/10.1002/adma.200801258.

    Article  CAS  Google Scholar 

  110. D. Yan, W. Lu, L. Qiu, Z. Meng, Y. Qiao, RSC Adv., 2019, 9, 21202; DOI: https://doi.org/10.1039/C9RA02768H.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. C. Li, Q. Xue, Z. Ji, Y. Li, H. Zhang, D. Li, Soft Matter, 2020, 16, 3063; DOI: https://doi.org/10.1039/C9SM02449B.

    Article  CAS  PubMed  Google Scholar 

  112. G. M. Paternò, L. Moscardi, I. Kriegel, F. Scotognella, G. Lanzani, J. Photonics Energy, 2018, 8, 032201; DOI: https://doi.org/10.1117/1.JPE.8.032201.

    Article  Google Scholar 

  113. S. K. Srivastava, Proc. of ICRTMD 2019 “Recent Trends in Materials and Devices” (Cham, Switzerland, November 2, 2020), Springer International Publishing, 2020, p. 163; DOI: https://doi.org/10.3390/app11052119.

  114. N. Pourali, H. Bahador, Phys. Plasmas, 2019, 26, 013515; DOI: https://doi.org/10.1063/1.5054662.

    Article  Google Scholar 

  115. S. K. Awasthi, R. Panda, P. K. Chauhan, L. Shiveshwari, Phys. Plasmas, 2018, 25, 052103; DOI: https://doi.org/10.1063/1.5026547.

    Article  Google Scholar 

  116. L. He, M. Wang, J. Ge, Y. Yin, Acc. Chem. Res., 2012, 45, 1431; DOI: https://doi.org/10.1021/ar200276t.

    Article  CAS  PubMed  Google Scholar 

  117. E. Tatsuro, X. R. Cheng, T. Endo, K. Kerman, Biosens. Bioelectron., 2018, 103, 158; DOI: https://doi.org/10.1016/j.bios.2017.12.013.

    Article  Google Scholar 

  118. K. Zhu, J. Chi, D. Zhang, B. Ma, X. Dong, J. Yang, C. Zhao, H. Liu, Analyst, 2019, 144, 5413; DOI: https://doi.org/10.1039/C9AN01042D.

    Article  CAS  PubMed  Google Scholar 

  119. Z. Cai, A. Sasmal, X. Liu, S. A. Asher, ACS Sensors, 2017, 2, 1474; DOI: https://doi.org/10.1021/acssensors.7b00426.

    Article  CAS  PubMed  Google Scholar 

  120. S. Romano, A. Lamberti, M. Masullo, E. Penzo, S. Cabrini, I. Rendina, V. Mocella, Materials, 2018, 11, 526; DOI: https://doi.org/10.3390/ma11040526.

    Article  PubMed Central  Google Scholar 

  121. O. A. A. El-Aziz, H. A. Elsayed, M. I. Sayed, Appl. Opt., 2019, 58, 8309; DOI: https://doi.org/10.1364/AO.58.008309.

    Article  Google Scholar 

  122. F. Scotognella, G. M. Paternò, I. Kriegel, S. Bonfadini, L. Moscardi, L. Criante, S. Donini, D. Ariodanti, M. Zani, E. Parisini, G. Lanzani, Proc. of the “Fiber Lasers and Glass Photonics: Materials through Applications II” (online conference, April 6–10, 2020); SPIE Photonics Europe, 2020, 113571G; DOI: https://doi.org/10.1117/12.2559455.

  123. Z.-Y. Xie, L.-G. Sun, G.-Z. Han, Z.-Z. Gu, Adv. Mater., 2008, 20, 3601; DOI: https://doi.org/10.1002/adma.200800495.

    Article  CAS  Google Scholar 

  124. Z.-Z. Gu, T. Iyoda, A. Fujishima, O. Sato, Adv. Mater., 2001, 13, 1295; DOI: https://doi.org/10.1002/1521-4095%28200109%2913%3A17<1295%3A%3AAID-ADMA1295>3.0.CO%3B2-7.

    Article  CAS  Google Scholar 

  125. S. P. Palto, L. M. Blinov, M. I. Barnik, V. V. Lazarev, B. A. Umanskii, N. M. Shtykov, Crystallogr. Rep., 2011, 56, 622; DOI: https://doi.org/10.1134/S106377451104016X.

    Article  CAS  Google Scholar 

  126. M. Rippa, P. Mormile, R. Capasso, M. Zanella, L. Petti, Mol. Cryst. Liq. Cryst., 2013, 573, 18; DOI: https://doi.org/10.1080/15421406.2013.763333.

    Article  CAS  Google Scholar 

  127. D. Budaszewski, K. Woli’nska, B. Jankiewicz, B. Bartosewicz, T. R. Woli’nski, Crystals, 2020, 10, 785; DOI: https://doi.org/10.3390/cryst10090785.

    Article  CAS  Google Scholar 

  128. T. F. Khalkhali, A. Bananej, Opt. Commun., 2016, 369, 79; DOI: https://doi.org/10.1016/j.optcom.2016.02.039.

    Article  Google Scholar 

  129. L. Criante, F. Scotognella, Mol. Cryst. Liq. Cryst., 2013, 572, 31; DOI: https://doi.org/10.1080/15421406.2012.763207.

    Article  CAS  Google Scholar 

  130. L. Criante, F. Scotognella, J. Phys. Chem. C, 2012, 116, 21572; DOI: https://doi.org/10.1021/jp309061r.

    Article  CAS  Google Scholar 

  131. K.-C. Huang, Y.-C. Hsiao, I. V. Timofeev, V. Y. Zyryanov, W. Lee, Opt. Express, 2016, 24, 25019; DOI: https://doi.org/10.1364/OE.24.025019.

    Article  CAS  PubMed  Google Scholar 

  132. T. Kuno, Y. Matsumura, K. Nakabayashi, M. Atobe, Angew. Chem., 2016, 128, 2549; DOI: https://doi.org/10.1002/ange.201511191.

    Article  Google Scholar 

  133. D. P. Puzzo, A. C. Arsenault, I. Manners, G. A. Ozin, Angew. Chem., 2009, 48, 943; DOI: https://doi.org/10.1002/anie.200804391.

    Article  CAS  Google Scholar 

  134. J. J. Walish, Y. Kang, R. A. Mickiewicz, E. L. Thomas, Adv. Mater., 2009, 21, 3078; DOI: https://doi.org/10.1002/adma.200900067.

    Article  CAS  Google Scholar 

  135. E. Aluicio-Sarduy, S. Callegari, D. G. F. Del Valle, A. Desii, I. Kriegel, F. Scotognella, Beilstein J. Nanotechnol., 2016, 7, 1404; DOI: https://doi.org/10.3762/bjnano.7.131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. V. Robbiano, M. Giordano, C. Martella, F. Di Stasio, D. Chiappe, F. B. De Mongeot, D. Comoretto, Adv. Opt. Mater., 2013, 1, 389; DOI: https://doi.org/10.1002/adom.201200060.

    Article  Google Scholar 

  137. S. Heo, A. Agrawal, D. J. Milliron, Adv. Funct. Mater., 2019, 29, 1904555; DOI: https://doi.org/10.1002/adfm.201904555.

    Article  Google Scholar 

  138. K. Chen, Q. Fu, S. Ye, J. Ge, Adv. Funct. Mater., 2017, 27, 1702825; DOI: https://doi.org/10.1002/adfm.201702825.

    Article  Google Scholar 

  139. R. Manda, S. Pagidi, Y. Heo, Y. J. Lim, M. Kim, S. H. Lee, NPG Asia Mater., 2020, 12, 1; DOI: https://doi.org/10.1038/s41427-020-0225-8.

    Article  Google Scholar 

  140. H.-K. Chang, J. Park, Adv. Opt. Mater., 2018, 6, 1800792; DOI: https://doi.org/10.1002/adom.201800792.

    Article  Google Scholar 

  141. X.-W. Du, D.-S. Hou, X. Li, D.-P. Sun, J.-F. Lan, J.-L. Zhu, W.-J. Ye, ACS Appl. Mater. Interfaces, 2019, 11, 22015; DOI: https://doi.org/10.1021/acsami.9b04577.

    Article  CAS  PubMed  Google Scholar 

  142. M. G. Han, C. G. Shin, S.-J. Jeon, H. Shim, C.-J. Heo, H. Jin, J. W. Kim, S. Lee, Adv. Mater., 2012, 24, 6438; DOI: https://doi.org/10.1002/adma.201203211.

    Article  CAS  PubMed  Google Scholar 

  143. E. S. Bolshakov, A. V. Ivanov, A. A. Kozlov, A. S. Aksenov, E. V. Isanbaeva, S. E. Kushnir, A. D. Yapryntsev, A. E. Baranchikov, Yu. A. Zolotov, Beilstein J. Nanotechnol., 2022, 13, 127; DOI: https://doi.org/10.3762/bjnano.13.9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. E. S. Bol’shakov, A. V. Ivanov, A. V. Garmash, A. S. Samokhin, A. A. Kozlov, Yu. A. Zolotov, Russ. J. Inorg. Chem., 2021, 66, 217; DOI: https://doi.org/10.1134/S0036023621020030.

    Article  Google Scholar 

  145. A. A. Kozlov, S. D. Abdullaev, A. S. Aksenov, A. V. Ivanov, Y. A. Semina, J. Int. Scientific Publ., 2018, 12, 64.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Kozlov.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 2037–2051, October, 2022.

No human or animal subjects were used in this research.

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozlov, A.A., Aksenov, A.S., Bolshakov, E.S. et al. Colloidal photonic crystals with controlled morphology. Russ Chem Bull 71, 2037–2051 (2022). https://doi.org/10.1007/s11172-022-3627-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-022-3627-7

Key words

Navigation