Skip to main content
Log in

Synthesis of optically active 3,3’-disubstituted biphenyl derivatives using palladium-catalyzed amination and their evaluation as enantioselective fluorescent detectors for amino alcohols and metal cations

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The palladium-catalyzed amination was used to synthesize optically active 3,3’-diaminosubstituted biphenyl derivatives (in particular, macrocyclic derivatives) decorated with additional fluorophore groups (dansyl and 7-methoxycoumarin). The synthesized compounds were studied by spectroscopic methods (UV spectroscopy, fluorescence) in the presence of individual enantiomers of amino alcohols and metal salts. One of the synthesized compounds was demonstrated to serve as an enantioselective fluorescent detector for enantiomers of 2-amino-1-propanol because of different changes in the fluorescence spectra. Certain compounds can be used as molecular probes for the detection of CuII, AlIII, CrIII, and InIII cations due to characteristic changes in the fluorescence spectra upon the addition of metal perchlorates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Xu, Z. Qiu, J. Zhao, J. Zhao, C. Wang, Tetrahedron: Asymmetry, 2009, 20, 1690.

    CAS  Google Scholar 

  2. J. Lin, Q. Hu, M. Xu, L. Pu, J. Am. Chem. Soc., 2002, 124, 2088.

    CAS  PubMed  Google Scholar 

  3. J. Lin, H. Zhang, L. Pu, Org. Lett., 2002, 4, 3297.

    CAS  PubMed  Google Scholar 

  4. E. N. R. Cho, Y. Li, H. J. Kim, M. H. Hyun, Chirality, 2011, 23, 349.

    CAS  PubMed  Google Scholar 

  5. G. E. Tumambac, C. Wolf, Org. Lett., 2005, 7, 4045.

    CAS  PubMed  Google Scholar 

  6. X. Mei, C. Wolf, Chem. Commun., 2004, 2078.

  7. I. Móczár, P. Huszthy, Z. Maidics, M. Kádár, K. Tóth, Tetrahedron, 2009, 65, 8250.

    Google Scholar 

  8. K. Tanaka, T. Tsuchitani, N. Fukuda, A. Masumoto, R. Arakawa, Tetrahedron: Asymmetry, 2012, 23, 205.

    CAS  Google Scholar 

  9. H. Wang, W. H. Chan, A. W. M. Lee, Org. Biomol. Chem., 2008, 6, 929.

    CAS  PubMed  Google Scholar 

  10. M. I. Burguete, F. Galindo, S. V. Luis, L. Vigara, J. Photochem. Photobiol. A: Chem., 2010, 209, 61.

    CAS  Google Scholar 

  11. M. Durmaz, S. Alpaydin, A. Sirit, M. Yilmaz, Tetrahedron: Asymmetry, 2006, 17, 2322.

    CAS  Google Scholar 

  12. X. Zhang, J. Yin, J. Yoon, Chem. Rev., 2014, 114, 4918.

    CAS  PubMed  Google Scholar 

  13. O. K. Grigorova, A. D. Averin, O. A. Maloshitskaya, V. B. Rybakov, I. P. Beletskaya, Macroheterocycles, 2016, 9, 418.

    CAS  Google Scholar 

  14. O. K. Grigorova, A. D. Averin, O. A. Maloshitskaya, I. P. Beletskaya, Macroheterocycles, 2016, 9, 425.

    CAS  Google Scholar 

  15. O. K. Grigorova, A. D. Averin, O. A. Maloshitskaya, I. P. Beletskaya, Macroheterocycles, 2017, 10, 446.

    CAS  Google Scholar 

  16. O. K. Grigorova, D. I. Gusev, A. D. Averin, O. A. Maloshitskaya, I. P. Beletskaya, Russ. Chem. Bull., 2019, 68, 848.

    CAS  Google Scholar 

  17. A. M. Costero, M. Colera, P. Gavina, S. Gil, M. Kubinyi, K. Pál, M. Kállay, Tetrahedron, 2008, 64, 3217.

    CAS  Google Scholar 

  18. Y. K. Kim, H. N. Lee, N. J. Singh, H. J. Choi, J. Xue, K. S. Kim, J. Yoon, M. H. Hyun, J. Org. Chem., 2008, 73, 301.

    CAS  PubMed  Google Scholar 

  19. S. Liu, K. Y. Law, Y. He, W. H. Chan, Tetrahedron Lett., 2006, 47, 7857.

    CAS  Google Scholar 

  20. M. K. Choi, H. N. Kim, H. J. Choi, J. Yoon, M. H. Hyun, Tetrahedron Lett., 2008, 49, 4522.

    CAS  Google Scholar 

  21. X. Huang, Y. He, C. Hu, Z. Chen, J. Fluoresc., 2009, 19, 97.

    CAS  PubMed  Google Scholar 

  22. X. Huang, Y. He, Z. Chen, C. Hu, G. Qing, Can. J. Chem., 2008, 86, 170.

    CAS  Google Scholar 

  23. K. Xu, P. Cheng, J. Zhao, C. Wang, J. Fluoresc., 2011, 21, 991.

    CAS  PubMed  Google Scholar 

  24. H. R. Snyder, C. Weaver, C. D. Marshall, J. Am. Chem. Soc., 1949, 71, 289.

    Google Scholar 

  25. J. P. Wolfe, S. L. Buchwald, J. Org. Chem., 2000, 65, 1144.

    CAS  PubMed  Google Scholar 

  26. J. P. Wolfe, H. Tomori, J. P. Sadighi, J. Yin, S. L. Buchwald, J. Org. Chem., 2000, 65, 1158.

    CAS  PubMed  Google Scholar 

  27. A. D. Averin, A. N. Uglov, A. K. Buryak, I. P. Beletskaya, Macroheterocycles, 2009, 2, 275.

    CAS  Google Scholar 

  28. A. D. Averin, A. N. Uglov, A. K. Buryak, I. P. Beletskaya, Mendeleev Commun., 2010, 20, 1.

    CAS  Google Scholar 

  29. A. D. Averin, A. N. Uglov, G. A. Zubrienko, E. A. Tarasenko, A. K. Buryak, I. P. Beletskaya, Curr. Org. Syth., 2017, 14, 918.

    CAS  Google Scholar 

  30. A. W. Czarnik, Chem. Biol., 1995, 2, 423.

    CAS  PubMed  Google Scholar 

  31. A. P. de Silva, H. Q. N. Gunaratne, T. Gunnlaugsson, A. J. M. Huxley, C. P. McCoy, J. T. Rademacher, T. E. Rice, Chem. Rev., 1997, 97, 1515.

    CAS  PubMed  Google Scholar 

  32. B. Valeur, I. Leray, Coord. Chem. Rev., 2000, 205, 3.

    CAS  Google Scholar 

  33. M. Formica, V. Fusi, L. Giorgi, M. Micheloni, Coord. Chem. Rev., 2012, 256, 170.

    CAS  Google Scholar 

  34. V. D. Gvozdev, K. N. Shavrin, E. G. Baskir, M. P. Egorov, O. M. Nefedov, Mendeleev Commun., 2017, 27, 231.

    CAS  Google Scholar 

  35. S. Gundala, M. R. Guda, A. F. Khasanov, D. S. Kopchuk, A. P. Krinochkin, S. Santra, G. V. Zyryanov, P. Venkatapuram, J. R. Garciac, V. N. Charushin, Mendeleev Commun., 2019, 29, 369.

    CAS  Google Scholar 

  36. E. V. Nosova, S. Achelle, G. N. Lipunova, V. N. Charushin, O. N. Chupakhin, Russ. Chem. Rev., 2019, 88, 1128.

    CAS  Google Scholar 

  37. A. S. Abel, A. D. Averin, I. P. Beletskaya, New J. Chem., 2016, 40, 5818.

    CAS  Google Scholar 

  38. A. S. Abel, A. Yu. Mitrofanov, Y. Rousselin, F. Denat, A. Bessmertnykh-Lemeune, A. D. Averin, I. P. Beletskaya, ChemPlusChem, 2016, 81, 35.

    CAS  PubMed  Google Scholar 

  39. N. M. Chernichenko, V. N. Shevchuk, A. D. Averin, O. A. Maloshitskaya, I. P. Beletskaya, Synlett, 2017, 28, 2800.

    CAS  Google Scholar 

  40. A. S. Abel, A. D. Averin, A. V. Cheprakov, V. A. Roznyatovsky, F. Denat, A. Bessmertnykh-Lemeune, I. P. Beletskaya, Org. Biomol. Chem., 2019, 17, 4243.

    CAS  PubMed  Google Scholar 

  41. A. S. Abel, I. S. Zenkov, A. D. Averin, A. V. Cheprakov, A. G. Bessmertnykh-Lemeune, B. S. Orlinson, I. P. Beletskaya, ChemPlusChem, 2019, 84, 498.

    CAS  PubMed  Google Scholar 

  42. T. Ukai, H. Kawazura, Y. Ishii, J. J. Bonnet, J. A. Ibers, J. Organomet. Chem., 1974, 65, 253.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Averin.

Additional information

Based on the materials of the XXI Mendeleev Congress on General and Applied Chemistry (September 9–13, 2019, St. Petersburg, Russia).

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1366–1377, July, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaferov, A.V., Malysheva, A.S., Averin, A.D. et al. Synthesis of optically active 3,3’-disubstituted biphenyl derivatives using palladium-catalyzed amination and their evaluation as enantioselective fluorescent detectors for amino alcohols and metal cations. Russ Chem Bull 69, 1366–1377 (2020). https://doi.org/10.1007/s11172-020-2911-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-020-2911-7

Key words

Navigation