Skip to main content
Log in

Students’ Energy Concepts at the Transition Between Primary and Secondary School

  • Published:
Research in Science Education Aims and scope Submit manuscript

Abstract

Energy is considered both a core idea and a crosscutting concept in science education. A thorough understanding of the energy concept is thought to help students learn about other (related) concepts within and across science subjects, thereby fostering scientific literacy. This study investigates students’ progression in understanding the energy concept in biological contexts at the transition from primary to lower secondary school by employing a quantitative, cross-sectional study in grades 3–6 (N = 540) using complex multiple-choice items. Based on a model developed in a previous study, energy concepts were assessed along four aspects of energy: (1) forms and sources of energy, (2) transfer and transformation, (3) degradation and dissipation, and (4) energy conservation. Two parallel test forms (A and B) indicated energy concept scores to increase significantly by a factor of 2.3 (A)/1.7 (B) from grade 3 to grade 6. Students were observed to progress in their understanding of all four aspects of the concept and scored highest on items for energy forms. The lowest scores and the smallest gain across grades were found for energy conservation. Based on our results, we argue that despite numerous learning opportunities, students lack a more integrated understanding of energy at this stage, underlining the requirement of a more explicit approach to teaching energy to young learners. Likewise, more interdisciplinary links for energy learning between relevant contexts in each science discipline may enable older students to more efficiently use energy as a tool and crosscutting concept with which to analyze complex content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. For reading convenience, the aspects will only be referred to as (1) forms (2) transfer (3) degradation, and (4) conservation in the following.

References

  • AAAS (American Association for the Advancement of Science). (2007). Getting assessment right. 2061 Today, 17(1), 1–7.

    Google Scholar 

  • Ausubel, D. P. (1963). The psychology of meaningful verbal learning. New York: Grune & Stratton.

    Google Scholar 

  • Barak, J., Gorodetsky, M., & Chipman, D. (1997). Understanding of energy in biology and vitalistic conceptions. International Journal of Science Education, 19(1), 21–30.

    Article  Google Scholar 

  • Bayrhuber C v,Hauber, W., & Kull, U. (2010). Linder Biologie. Gesamtband. (23 ed.). Braunschweig: Schroedel. Linder biology school book for upper high school

  • Boyes, E., & Stanisstreet, M. (1990). Pupils’ ideas concerning energy sources. International Journal of Science Education, 12(5), 513–529.

    Article  Google Scholar 

  • Bransford, J. D., Brown, A. L., & Cocking, R. R. (1999). How people learn: brain, mind, experience and school. Washington: National Academy Press.

    Google Scholar 

  • Burger, J. (2001). Schülervorstellungen zu “Energie im biologischen Kontext”-Ermittlungen, Analysen und Schlussfolgerungen. Bielefeld: Bielefeld university, dissertation. [Student conceptions concerning energy in biological contexts-research, analysis and conclusions] http://pub.uni-bielefeld.de/download/2305865/2305868 . Accessed 16 January 2012.

  • Chabalengula, V., Sanders, M., & Mumba, F. (2011). Diagnosing students’ understanding of energy and its related concepts in biological contexts. International Journal of Science and Mathematics Education, 10(2), 241–266.

    Article  Google Scholar 

  • Chen, B., Eisenkraft, A., Fortus, D., Krajcik, J., Neumann, K., Nordine, J., & Scheff, A. (Eds.). (2014). Teaching and learning of energy in K–12 education. New York: Springer.

    Google Scholar 

  • Chow, G. C. (1960). Tests of equality between sets of coefficients in two linear regressions. Econometrica, 26(3), 591–605.

    Article  Google Scholar 

  • Constantinou, C. P., & Papadouris, N. (2012). Teaching and learning about energy in middle school: an argument for an epistemic approach. Studies in Science Education, 48(2), 161–186.

    Article  Google Scholar 

  • ACARA (Australian Curriculum, Assessment and Reporting Authority) (2013). The Australian Curriculum–Science. http://www.australiancurriculum.edu.au/Download/F10 . Accessed 31 October 2013.

  • Dawson-Tunik, T. L. (2006). Stage-like patterns in the development of conceptions of energy. In X. F. Liu & W. Boone (Eds.), Applications of Rasch measurement in science education (pp. 111–136). Maple Grove, Minnesota: JAM Press.

    Google Scholar 

  • Deci, E. L., & Ryan, R. M. (2012). Intrinsic Motivation Inventory (IMI). http://www.selfdeterminationtheory.org/questionnaires. Accessed 27 June 2012.

  • DfE (Department for Education) (2013). Science programs of study: key stage 3-National curriculum in England. https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/239134/SECONDARY_national_curriculum_-_Science.pdf . Accessed 31 October 2013.

  • Doménech, J., Gil-Pérez, D., Gras-Martí, A., Guisasola, J., Martínez-Torregrosa, J., Salinas, J., et al. (2007). Teaching of energy issues: a debate proposal for a global reorientation. Science & Education, 16(1), 43–64.

    Article  Google Scholar 

  • Driver, R., & Warrington, L. (1985). Students’ use of the principle of energy conservation in problem situations. Physics Education, 20(4), 171.

    Article  Google Scholar 

  • Duit, R. (1984). Learning the energy concept in school—empirical results from the Philippines and West Germany. Physics Education, 19(2), 59–66.

    Article  Google Scholar 

  • Duit, R., & Kesidou, S. (1988). Students’ understanding of basic ideas of the second law of thermodynamics. Research in Science Education, 18(1), 186–195.

    Article  Google Scholar 

  • Duschl, R. A., Schweingruber, H. A., & Shouse, A. W. (2007). Taking science to school: learning and teaching science in grades K-8. Washington: The National Academies Press.

    Google Scholar 

  • EDK (Schweizerische Konferenz der kantonalen Erziehungsdirektoren) (2011). Grundkompetenzen für die Naturwissenschaften-Nationale Bildungsstandards-Freigegeben von der EDK-Plenarversammlung am 16.Juni 2011 http://edudoc.ch/record/96787/files/grundkomp_nawi_d.pdf . Accessed 31 October 2013.

  • Field, A. (2009). Discovering statistics using SPSS (3rd ed.). London: Sage Publications.

    Google Scholar 

  • Finegold, M., & Trumper, R. (1989). Categorizing pupils’ explanatory frameworks in energy as a means to the development of a teaching approach. Research in Science Education, 19(1), 97–110.

    Article  Google Scholar 

  • Fleiss, J. L., Cohen, J., & Everitt, B. S. (1969). Large sample standard errors of kappa and weighted kappa. Psychological Bulletin, 72(5), 323–327.

    Article  Google Scholar 

  • Forde, T. (2003). “When I am watching television I am not using any energy”—an empirical study of junior science students’ intuitive concepts of energy. Irish Educational Studies, 22(3), 71–89.

    Article  Google Scholar 

  • Gayford, C. G. (1986). Some aspects of the problems of teaching about energy in school biology. European Journal of Science Education, 8(4), 443–450.

    Article  Google Scholar 

  • Goldring, H., & Osborne, J. (1994). Students’ difficulties with energy and related concepts. Physics Education, 29(1), 26.

    Article  Google Scholar 

  • Gottlieb, M., G. Haala, et al. (2010). Natura 1. Biologie für Gymnasien-Nordrhein-Westphalen G8. Stuttgart/Leipzig: Klett. [Biology textbook for grammar schools in North Rhine-Westphalia, 8 year-curriculum]

  • Heller, K. A., & Perleth, C. (2000). KFT 4-12 + R-Kognitive Fähigkeiten Test für 4.-12. Klassen, Revision. Göttingen: Hogrefe. [Test of cognitive abilities in grades 4–12, revised]

  • Herrmann-Abell, C. F., & DeBoer, G. E. (2011). Investigating Students’ Understanding of Energy Transformation, Energy Transfer, and Conservation of Energy Using Standards-Based Assessment Items. Paper presented at the 2011 National Association for Research in Science Teaching (NARST), Orlando, Florida, 3–6 April 2011. http://www.project2061.org/publications/2061connections/2011/media/herrmann-abell_narst_2011.pdf. Accessed 19 June 2014.

  • Hirca, N. C., & Akdeniz, F. (2008). Investigating grade 8 students’ conceptions of ‘energy’ and related concepts. Journal of Turkish Science Education, 5(1), 75–87.

    Google Scholar 

  • Holden, C. C., & Barrow, L. H. (1984). Validation of the test of energy concepts and values for high school. Journal of Research in Science Teaching, 21(2), 187–196.

    Article  Google Scholar 

  • KMK (Sekretariat der ständigen Konferenz der Kultusminister der Länder in der Bundesrepublik Deutschland) (2005a). Bildungsstandards im Fach Physik für den Mittleren Schulabschluss Beschluss vom 16.12. 2004. München: Luchterhand. [German national education standards concerning physics for middle school graduation. Decision of December 16th 2004]

  • KMK (Sekretariat der ständigen Konferenz der Kultusminister der Länder in der Bundesrepublik Deutschland) (2005b). Bildungsstandards im Fach Biologie für den Mittleren Schulabschluss-Beschluss vom16.12.2004. München: Luchterhand. [German national education standards concerning biology for middle school graduation. Decision of December 16th 2004]

  • Jin, H., & Anderson, C. W. (2012). A learning progression for energy in socio-ecological systems. Journal of Research in Science Teaching, 49(9), 1149–1180.

    Article  Google Scholar 

  • Jütte, M., & Kähler, H. (2008). Biologie heute entdecken 1. Ein Lehr-und Arbeitsbuch. Schleswig-Holstein. Schroedel, Braunschweig. [Biology discovered today 1: A text- and workbook; for lower secondary school]

  • Kirk, R. E. (1996). Practical significance: a concept whose time has come. Educational and Psychological Measurement, 56(5), 746–759. doi:10.1177/0013164496056005002.

    Article  Google Scholar 

  • Kraft, D. (2009). Pusteblume. Das Arbeitsbuch 3 und 4. Braunschweig: Schroedel. [‘Dandelion’. Workbook for lower science education in grades 3 and 4]

  • Krajcik, J. S., Sutherland, L. A., Drago, K., & Merritt, J. (2012). The promise and value of learning progression research. In S. Bernholt, K. Neumann, & P. Nentwig (Eds.), Making it tangible: learning outcomes in science education (pp. 261–283). Münster: Waxmann.

    Google Scholar 

  • Kurnaz, M. A., & Sağlam Arslan, A. (2011). A thematic review of some studies investigating students’ alternative conceptions about energy. Eurasian Journal of Chemistry and Physics Education, 3(1), 51–74.

    Google Scholar 

  • Lacy, S., Tobin, R., Wiser, M., & Crissman, S. (2014). Looking through the energy lens: a proposed learning progression for energy in grades 3–5. In B. Chen, A. Eisenkraft, D. Fortus, J. Krajcik, K. Neumann, J. Nordine, & A. Scheff (Eds.), Teaching and learning of energy in K-12 education. New York: Springer.

    Google Scholar 

  • Lancor, R. A. (2012). Using student-generated analogies to investigate conceptions of energy: a multidisciplinary study. International Journal of Science Education, doi: 10.1080/09500693.2012.714512

  • Lead States, N. G. S. S. (2013). Next generation science standards: for states, by states. Washington: The National Academies Press.

    Google Scholar 

  • Lee, H. B. (2008). Using the chow test to analyze regression discontinuities. Tutorials in Quantitative Methods for Psychology, 4(2), 46–50.

    Google Scholar 

  • Lee, H.-S., & Liu, O. L. (2009). Assessing learning progression of energy concepts across middle school grades: the knowledge integration perspective. Science Education, 94(4), 665–688.

    Article  Google Scholar 

  • Lin, C.-Y., & Hu, R. (2003). Students’ understanding of energy flow and matter cycling in the context of the food chain, photosynthesis, and respiration. International Journal of Science Education, 25(12), 1529–1544.

    Article  Google Scholar 

  • Liu, X., & McKeough, A. (2005). Developmental growth in students’ concept of energy: analysis of selected items from the TIMSS database. Journal of Research in Science Teaching, 42(5), 493–517.

    Article  Google Scholar 

  • Liu, X., & Ruiz, M. E. (2008). Using data mining to predict K–12 students’ performance on large-scale assessment items related to energy. Journal of Research in Science Teaching, 45(5), 554–573.

    Article  Google Scholar 

  • Liu, X., & Tang, L. (2004). The progression of students’ conceptions of energy: a cross-grade, cross-cultural study. Canadian Journal of Science, Mathematics, and Technology Education, 4(1), 43–57.

    Article  Google Scholar 

  • Luyten, H. (2006). An empirical assessment of the absolute effect of schooling: regression-discontinuity applied to TIMSS-95. Oxford Review of Education, 32(3), 397–429.

    Article  Google Scholar 

  • Meier, R. (2007a). Mobile 3. Sachunterricht Nord. Braunschweig: Westermann [Work-and textbook for grade 3 science education].

    Google Scholar 

  • Meier, R. (2007b). Mobile 4. Sachunterricht Nord. Braunschweig: Westermann [Work-and textbook for grade 4 science education].

    Google Scholar 

  • Messick, S. (1995). Validity of psychological assessment: validation of inferences from persons’ responses and performances as scientific inquiry into score meaning. American Psychologist, 50(9), 741–749.

    Article  Google Scholar 

  • Millar, R. (2005). Teaching about Energy. University of York: Department of Educational Studies. ISBN: 1-85342-626-1. http://www.york.ac.uk/media/educationalstudies/documents/research/Paper11Teachingaboutenergy.pdf. Accessed 19 June 2014.

  • Neumann, K., Viering, T., Boone, W. J., & Fischer, H. E. (2013). Towards a learning progression of energy. Journal of Research in Science Teaching, 50(2), 162–188.

    Article  Google Scholar 

  • Nordine, J., Krajcik, J., & Fortus, D. (2010). Transforming energy instruction in middle school to support integrated understanding and future learning. Science Education, 95(4), 670–699.

    Article  Google Scholar 

  • Novak, J. D. (2005). Results and implications of a 12-year longitudinal study of science concept learning. Research in Science Education, 35(1), 23–40.

    Article  Google Scholar 

  • NRC (National Research Council and Committee on Conceptual Framework for the New K-12 Science Education Standards). (2012). A framework for K-12 science education: practices, crosscutting concepts, and core ideas. Washington: The National Academies Press.

    Google Scholar 

  • Pearson, E. S., & Hartley, H. O. (1954). The distribution of the ratio, in a single normal sample, of range to standard deviation. Biometrika, 41, 491.

    Article  Google Scholar 

  • Remmers, H. H., Shock, N. W., & Kelly, E. L. (1927). An empirical study of the validity of the spearman-brown formula as applied to the Purdue rating scale. Journal of Educational Psychology, 18(3), 187–195.

    Article  Google Scholar 

  • Retelsdorf, J., & Becker, M. (2012). “Reading development in a tracked school system: a longitudinal study over 3 years using propensity score matching.”. British Journal of Educational Psychology, 82(4), 647–671.

    Article  Google Scholar 

  • Shultz, T. R., & Coddington, M. (1981). Development of the concepts of energy conservation and entropy. Journal of Experimental Child Psychology, 31(1), 131–153.

    Article  Google Scholar 

  • Solbes, J., Guisasola, J., & Tarín, F. (2009). Teaching energy conservation as a unifying principle in physics. Journal of Science Education and Technology, 18(3), 265–274.

    Article  Google Scholar 

  • Solomon, J. (1983). Learning about energy: how pupils think in two domains. European Journal of Science Education, 5(1), 49–59.

    Article  Google Scholar 

  • Tatar, E., & Oktay, M. (2007). Students’ misunderstanding about the energy conservation principle: a general view to studies in literature. International Journal of Environmental & Science Education, 2(3), 79–81.

    Google Scholar 

  • Trumper, R. (1990). Being constructive: an alternative approach to the teaching of the energy concept—part one. International Journal of Science Education, 12(4), 343–354.

    Article  Google Scholar 

  • Trumper, R. (1993). Children’s energy concepts: a cross-age study. International Journal of Science Education, 15(2), 139–148.

    Article  Google Scholar 

  • Trumper, R. (1997a). The need for change in elementary school teacher training: the case of the energy concept as an example. Educational Research, 39(2), 157–174.

    Article  Google Scholar 

  • Trumper, R. (1997b). A survey of conceptions of energy of Israeli pre-service high school biology teachers. International Journal of Science Education, 19(1), 31–46.

    Article  Google Scholar 

  • Trumper, R., Raviolo, A., & Shnersch, A. (2000). A cross-cultural survey of conceptions of energy among elementary school teachers in training empirical results from Israel and Argentina. Teaching and Teacher Education, 16(7), 697.

    Article  Google Scholar 

  • Van Hook, S., & Huziak-Clark, T. (2008). Lift, squeeze, stretch, and twist: research-based inquiry physics experiences (RIPE) of energy for kindergartners. Journal of Elementary Science Education, 20(3), 1–16.

    Article  Google Scholar 

  • Walter, O., Senkbeil, M., Rost, J., Carstensen, C. H., & Prenzel, M. (2006). Die entwicklung der naturwissenschaftlichen kompetenz von der neunten bis zur zehnten klassenstufe: Deskriptive befunde. In M. Prenzel, J. Baumert, W. Blum, R. Lehmann, D. Leutner, M. Neubrand, R. Pekrun, J. Rost, & U. Schiefele (Eds.), PISA 2003: Untersuchungen zur Kompetenzentwicklung im Verlauf eines Schuljahres (pp. 87–118). Münster: Waxmann [The development of scientific competence from grade 9 to grade 10: descriptive findings].

    Google Scholar 

  • Wandersee, J., Mintzes, J., & Novak, J. (1994). Research on alternative conceptions in science. In D. Gabel (Ed.), Handbook of research on science teaching and learning. New York: Macmillan.

    Google Scholar 

  • Warren, J. W. (1982). The nature of energy. European Journal of Science Education, 4(3), 295–297.

    Article  Google Scholar 

  • Warren, J. W. (1983). Energy and its carrieres: a critical analysis. Physics Education, 18(5), 209–212.

Download references

Acknowledgments

The authors acknowledge funding by the federal state of Hamburg and the convenient access to the field as a part of the research program accompanying the “Hamburger Schulversuch alles> > könner”. The support of the participating schools, teachers, and students was essential for this study. We want to thank Maika Drews and Annetha Pries for helping with data sampling. For statistical and methodological advice, we are grateful to Michael Leucht, Martin Senkbeil, Gabriel Nagy, and Olaf Köller from IPN, Kiel. Finally, we thank two anonymous reviewers for their critical, yet supportive comments that made many points in this article much clearer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian T. Opitz.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Opitz, S.T., Harms, U., Neumann, K. et al. Students’ Energy Concepts at the Transition Between Primary and Secondary School. Res Sci Educ 45, 691–715 (2015). https://doi.org/10.1007/s11165-014-9444-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11165-014-9444-8

Keywords

Navigation