Skip to main content
Log in

Investigations of the photoelectrochemical properties of different contents In of InxGa1-xN in CO2 reduction

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

A Correction to this article was published on 12 October 2021

This article has been updated

Abstract

CO2 reduction with water and light illumination is realized using a nitride (InxGa1-xN) photoelectrode that separates pairs of electrons and holes, thereby driving oxidation and reduction reactions. InxGa1-xN is a promising material for photocatalysis due to its tuneable band gap and excellent optical properties. However, little research has been done on the effect of In contents on CO2 reduction in InxGa1-xN. In this work, the photocatalytic performance of different In contents of InxGa1-xN photoanodes and the electrode's corrosivity in the process of artificial photosynthesis were studied. We found that the photoanode containing 0.9% In enhanced the conversion to CO, CH4, C2H4, and C2H6. Our photoluminescence spectroscopy, scanning electron microscopy, and X-ray diffraction results suggested that photo-corrosion occurs on the photoanode's surface at the end of the reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

References

  1. E.E. Benson, C.P. Kubiak, A.J. Sathrum, J.M. Smieja, Chem. Soc. Rev. 38, 89 (2009)

    Article  CAS  Google Scholar 

  2. L.A. Taib, M. Keshavarz, Res. Chem. Intermed. 47, 000 (2021)

  3. D. McCollum, N. Bauer, K. Calvin, A. Kitous, K. Riahi, Clim. Change 123, 413 (2013)

    Article  Google Scholar 

  4. X. Huang, W. Gu, Y. Ma et al., Res. Chem. Intermed. 46, 1 (2020)

    Article  Google Scholar 

  5. F. Chen, Z. Ma, L. Ye et al., Adv Mater. 32, 1908350 (2020)

    Article  CAS  Google Scholar 

  6. N. Markusson, F. Kern, J. Watson, S. Arapostathis, H. Chalmers, N. Ghaleigh, P. Heptonstall, P. Pearson, D. Rosati, S. Russell, Technol. Forecast. Soc. 79, 903 (2012)

    Article  Google Scholar 

  7. C. Dong, C. Lian, S. Hu, Z. Deng, J. Gong, M. Li, H. Liu, M. Xing, J. Zhang, Nat. Commun. 9, 1252 (2018)

    Article  Google Scholar 

  8. L. Hao, L. Kang, H. Huang, L. Ye, K. Han, S. Yang, H. Yu, M. Batmunkh, Y. Zhang, T. Ma, Adv. Mater. 31, 1900546 (2019)

    Article  Google Scholar 

  9. K. Fujii, K. Kusakabe, K. Ohkawa, Jap. J. Appl. Phys. 44, 7433 (2005)

    Article  CAS  Google Scholar 

  10. M. Finken, A. Wille, B. Reuters, B. Holländer, M. Heuken, H. Kalisch, A. Vescan, Phys. Status Solidi C. 11, 746 (2014)

    Article  CAS  Google Scholar 

  11. A. Fujishima, K. Honda, Nature 238, 37 (1972)

    Article  CAS  Google Scholar 

  12. M. Schreier, L. Curvat, F. Giordano, L. Steier, A. Abate, S.M. Zakeeruddin, J. Luo, M.T. Mayer, M. Grätzel, Nat. Commun. 6, 1 (2015)

    Article  Google Scholar 

  13. T. Sekimoto, S. Shinagawa, Y. Uetake, K. Noda, M. Deguchi, S. Yotsuhashi, K. Ohkawa, Appl. Phys. Lett. 106, 073902 (2015)

    Article  Google Scholar 

  14. J. Kothandaraman, A. Goeppert, M. Czaun, G.A. Olah, G.K.S. Prakash, J. Am. Chem. Soc. 138, 778 (2016)

    Article  CAS  Google Scholar 

  15. S. Yotsuhashi, M. Deguchi, Y. Zenitani, R. Hinogami, H. Hashiba, Y. Yamada, K. Ohkawa, Jpn. J. Appl. Phys. 51, 02BP07 (2012)

    Article  Google Scholar 

  16. S. Yotsuhashi, M. Deguchi, Y. Zenitani, R. Hinogami, H. Hashiba, Y. Yamada, K. Ohkawa, Appl. Phys. Express 4, 117101 (2011)

    Article  Google Scholar 

  17. S. Wang, Xu. Han, Y. Zhang, Na. Tian, T. Ma, Huang. Hongwei. Small. Struct. 2, 2000061 (2021)

    Article  Google Scholar 

  18. J.K. Sheu, P.H. Liao, T.C. Huang, K.J. Chiang, W.C. Lai, M.L. Lee, Sol. Energy. Mat. Sol. C. 166, 86 (2017)

    Article  CAS  Google Scholar 

  19. Z. Xing, W. Yang, Z. Yuan et al., J. Cryst. Growth 516, 5762 (2019)

    Article  Google Scholar 

  20. J. Wu, W. Walukiewicz et al., Appl. Phys. Lett. 80, 4741 (2002)

    Article  CAS  Google Scholar 

  21. M.D. Salazar-Villalpando, ECS Trans. 33, 77 (2011)

    Article  CAS  Google Scholar 

  22. H. Zhong, K. Fujii, Y. Nakano, Mater. Res. Soc. Symp. Proc. 1640, 1 (2014)

    Article  Google Scholar 

  23. S. Yotsuhashi, H. Hashiba, M. Deguchi et al., AIP. Adv 24, 2326 (2012)

    Google Scholar 

  24. Y. Hori, A. Murata, R. Takahashi, J. Chem. Soc. 185, 2309 (1989)

    Google Scholar 

  25. M. Deguchi, S. Yotsuhashi, H. Hashiba et al., Jpn. J. Appl. Phys. 52, 279 (2013)

    Article  Google Scholar 

  26. L. Caccamo, G. Cocco, G. Martín, H. Zhou, S. Funding, A. Gad, M.S. Mohajerani, M. Abdelfatah, S. Estradé, F. Peiró, W. Dziony, H. Bremers, A. Hangleiter, L. Mayrhofer, G. Lilienkamp, M. Moseler, W. Daum, A. Waag, ACS Appl. Mater. Inter. 8, 8232 (2016)

    Article  CAS  Google Scholar 

  27. K. Al-Heusen, M.R. Hashim, N.K. Ali, APPL Sur Sci. 257(14) (2011)

  28. Z. Sun, T. Ma, H. Tao, Q. Fan, B. Han, Chem. 3, 560 (2017)

    Article  CAS  Google Scholar 

  29. M. Finken, A. Wille, B. Reuters, M. Heuken, H. Kalisch, A. Vescan, Phys. Status Solidi B. 252, 895 (2014)

    Article  Google Scholar 

  30. K.R. Reyes-Gil, E.A. Reyes-García, D. Raftery, J. Phys. Chem. C. 111, 14579 (2007)

    Article  CAS  Google Scholar 

  31. P.G. Moses, C.G. Van de Walle, Appl. Phys. Lett. 96, 021908 (2010)

    Article  Google Scholar 

  32. T. Hayashi, M. Deura, K. Ohkawa, Jpn. J. Appl. Phys. 51, 2601 (2012)

    Article  Google Scholar 

  33. Y.A. Attia, S.H. Abdel-Hafez, Res. Chem. Intermed. 47, 14 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 51871089, 61674051), the project for Science and Technology Correspondent of Tianjin City (Grant No. 20YDTPJC01710), the Research Foundation of Education Bureau of Hebei (Grant No. QN2021044) and S&T Program of Hebei (Grant No. 20311001D).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guifeng Chen or Hui Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, G., Li, H., Zhang, H. et al. Investigations of the photoelectrochemical properties of different contents In of InxGa1-xN in CO2 reduction. Res Chem Intermed 47, 4825–4835 (2021). https://doi.org/10.1007/s11164-021-04556-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-021-04556-x

Keywords

Navigation