Skip to main content
Log in

Kinetic, isotherm, and mechanism investigations of the removal of nitrate and nitrite from water by the synthesized hydrotalcite Mg–Al

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The objective of this work is to test the effectiveness of hydrotalcite as an adsorbent for the retention of nitrate and nitrite ions and to study the influence of various reaction parameters such as pH, adsorbent dose, contact time and initial ion concentration. Hydrotalcites (HTx) of different Mg/Al ratios (x was Mg/Al ratio; 2, 3, 4) were synthesized by the co-precipitation method at constant pH and characterized by X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR). The results obtained indicate that hydrotalcite (HT3) allows good retention of nitrate and nitrite ions with no pH adjustment. Adsorption increases with decreasing mass of the adsorbent and increases with increasing initial concentration of nitrate and nitrite ions. When the Mg/Al ratio changes from 2 to 4; the electrical charge density between layers weakens; the inter-layer spacing increases and the material shows greater adsorption capacity. The equilibrium isotherm showed that the Langmuir model provided a better fit to the experimental data than the Freundlich model for nitrates and nitrites. The adsorption capacity of HT3 for nitrates and nitrites was found to be 6.92 mg/g and 9.26 mg/g, respectively. The XRD analysis after adsorption showed that materials that had undergone nitrate and nitrite ions adsorption, maintain the hydrotalcite structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. M.H. Ward, Drinking Water Nitrate and Human Health, 2nd edn. (Elsevier, United States, 2011).

    Google Scholar 

  2. D. Majumdar, N. Gupta, Indian J. Environ. Health 42, 28 (2000)

    CAS  Google Scholar 

  3. H.F. Chiu, S.S. Tsai, C.Y. Yang, J. Toxicol. Environ. Heal. Part A Curr. Issues 70, 1000 (2007)

    Article  CAS  Google Scholar 

  4. T.V. Anoop Kapoor, J. Environ. Eng. 123, 371 (1997)

    Article  Google Scholar 

  5. A. Bhatnagar, M. Sillanpää, Chem. Eng. J. 168, 493 (2011)

    Article  CAS  Google Scholar 

  6. B. Rezania, J.A. Oleszkiewicz, N. Cicek, Water Res. 41, 1074 (2007)

    Article  CAS  PubMed  Google Scholar 

  7. B. Tepuš, M. Simonič, I. Petrinić, J. Hazard. Mater. 170, 1210 (2009)

    Article  PubMed  Google Scholar 

  8. J.H. Ahn, K.H. Choo, H.S. Park, J. Memb. Sci. 310, 296 (2008)

    Article  CAS  Google Scholar 

  9. P. Te Chiueh, Y.H. Lee, C.Y. Su, S.L. Lo, J. Hazard. Mater. 192, 837 (2011)

    Article  CAS  PubMed  Google Scholar 

  10. D.J. Wan, H.J. Liu, X. Zhao, J.H. Qu, S.H. Xiao, Y.N. Hou, J. Colloid Interface Sci. 332, 151 (2009)

    Article  CAS  PubMed  Google Scholar 

  11. U. Prüsse, M. Hähnlein, J. Daum, K.D. Vorlop, Catal. Today 55, 79 (2000)

    Article  Google Scholar 

  12. J. Shi, S. Yi, H. He, C. Long, A. Li, Chem. Eng. J. 230, 166 (2013)

    Article  CAS  Google Scholar 

  13. H. Song, Y. Zhou, A. Li, S. Mueller, Desalination 296, 53 (2012)

    Article  CAS  Google Scholar 

  14. A. Pintar, J. Batista, J. Levec, Chem. Eng. Sci. 56, 1551 (2001)

    Article  CAS  Google Scholar 

  15. O. Primo, M.J. Rivero, A.M. Urtiaga, I. Ortiz, J. Hazard. Mater. 164, 389 (2009)

    Article  CAS  PubMed  Google Scholar 

  16. D.R. Kioussis, F.W. Wheaton, P. Kofinas, Aquac. Eng. 23, 315 (2000)

    Article  Google Scholar 

  17. P.C. Mishra, R.K. Patel, J. Environ. Manag. 90, 519 (2009)

    Article  CAS  Google Scholar 

  18. C. Namasivayam, W.H. Höll, J. Chem. Technol. Biotechnol. 80, 164 (2005)

    Article  CAS  Google Scholar 

  19. D. Wan, H. Liu, R. Liu, J. Qu, S. Li, J. Zhang, Chem. Eng. J. 195–196, 241 (2012)

    Article  Google Scholar 

  20. I.A. Kumar, N. Viswanathan, Ind. Eng. Chem. Res. 57, 14470 (2018)

    Article  CAS  Google Scholar 

  21. M.O. Omorogie, F.O. Agunbiade, M.O. Alfred, O.T. Olaniyi, T.A. Adewumi, A.A. Bayode, A.E. Ofomaja, E.B. Naidoo, C.P. Okoli, T.A. Adebayo, E.I. Unuabonah, Chem. Pap. 72, 409 (2017)

    Article  Google Scholar 

  22. E. Viglašová, M. Galamboš, Z. Danková, L. Krivosudský, C.L. Lengauer, R. Hood-Nowotny, G. Soja, A. Rompel, M. Matík, J. Briančin, Waste Manag. 79, 385 (2018)

    Article  PubMed  Google Scholar 

  23. F. Wang, D. Liu, P. Zheng, X. Ma, J. Ind. Eng. Chem. 41, 165 (2016)

    Article  Google Scholar 

  24. F. Ogata, D. Imai, N. Kawasaki, J. Environ. Chem. Eng. 3, 155 (2015)

    Article  CAS  Google Scholar 

  25. M. Islam, R. Patel, J. Hazard. Mater. 190, 659 (2011)

    Article  CAS  PubMed  Google Scholar 

  26. W.T. Reichle, Solid State Ionics 22, 135 (1986)

    Article  CAS  Google Scholar 

  27. F. Cavani, F. Trifiro, A. Vaccari, Catal. Today 11, 173 (1991)

    Article  CAS  Google Scholar 

  28. A. Vanaamudan, B. Chavada, P. Padmaja, J. Environ. Chem. Eng. 4, 2617 (2016)

    Article  CAS  Google Scholar 

  29. T.J. Vulić, G.C. Bošković, Acta Period. Technol. 41, 131 (2010)

    Article  Google Scholar 

  30. R.M.M. dos Santos, R.G.L. Gonçalves, V.R.L. Constantino, C.V. Santilli, P.D. Borges, J. Tronto, F.G. Pinto, Appl. Clay Sci. 140, 132 (2017)

    Article  Google Scholar 

  31. L. Deng, Z. Shi, X. Peng, S. Zhou, J. Alloys Compd. 688, 101 (2016)

    Article  CAS  Google Scholar 

  32. F. Yang, S. Sun, X. Chen, Y. Chang, F. Zha, Z. Lei, Appl. Clay Sci. 123, 134 (2016)

    Article  CAS  Google Scholar 

  33. Y. Huang, X. Ma, G. Liang, H. Yan, Chem. Eng. J. 141, 1 (2008)

    Article  CAS  Google Scholar 

  34. J. Yu, J. Li, H. Wei, J. Zheng, H. Su, X. Wang, J. Mol. Catal. A Chem. 395, 128 (2014)

    Article  CAS  Google Scholar 

  35. T. Kameda, M. Saito, Y. Umetsu, J. Alloys Compd. 402, 46 (2005)

    Article  CAS  Google Scholar 

  36. H. Ziyat, M.N. Bennani, H. Hajjaj, S. Mekdad, O. Qabaqous, Res. Chem. Intermed. 44, 4163 (2018)

    Article  CAS  Google Scholar 

  37. M.N. Bennani, D. Tichit, F. Figueras, S. Abouarnadasse, J. Chim. Phys. Physico. Chimie. Biol. 96, 498 (1999)

    Article  CAS  Google Scholar 

  38. Y. Lin, Q. Fang, B. Chen, J. Environ. Sci. (China) 26, 493 (2014)

    Article  CAS  Google Scholar 

  39. L. Lv, J. He, M. Wei, D.G. Evans, X. Duan, Water Res. 40, 735 (2006)

    Article  CAS  PubMed  Google Scholar 

  40. T.T.X. Hang, T.A. Truc, N.T. Duong, P.G. Vu, T. Hoang, Appl. Clay Sci. 67–68, 18 (2012)

    Article  Google Scholar 

  41. S. Lagergren, Handlingar 4, 1 (1898)

    Google Scholar 

  42. Y.S. Ho, Scientometrics 59, 171 (2004)

    Article  CAS  Google Scholar 

  43. Y.S. Ho, G. McKay, Chem. Eng. J. 70, 115 (1998)

    Article  CAS  Google Scholar 

  44. Y.S. Ho, G. McKay, Process Biochem. 34, 451 (1999)

    Article  CAS  Google Scholar 

  45. J.C. Weber, W.J. Morris, J. Sanit. Eng. Div. Am. Soc. Civ. Eng. 89, 31 (1963)

    Article  Google Scholar 

  46. Y. Cengeloglu, A. Tor, M. Ersoz, G. Arslan, Sep. Purif. Technol. 51, 374 (2006)

    Article  CAS  Google Scholar 

  47. J. Matusik, Chem. Eng. J. 246, 244 (2014)

    Article  CAS  Google Scholar 

  48. Ö. Gerçel, H.F. Gerçel, Chem. Eng. J. 132, 289 (2007)

    Article  Google Scholar 

  49. K.V. Kumar, V. Ramamurthi, S. Sivanesan, J. Colloid Interface Sci. 284, 14 (2005)

    Article  CAS  PubMed  Google Scholar 

  50. I. Langmuir, J. Am. Chem. Soc. 40, 1361 (1918)

    Article  CAS  Google Scholar 

  51. H.M.F. Freundlich, J. Phys. Chem. 57, 385 (1906)

    CAS  Google Scholar 

  52. A. Afkhami, T. Madrakian, Z. Karimi, J. Hazard. Mater. 144, 427 (2007)

    Article  CAS  PubMed  Google Scholar 

  53. F.D. Ardejani, K. Badii, N.Y. Limaee, S.Z. Shafaei, A.R. Mirhabibi, J. Hazard. Mater. 151, 730 (2008)

    Article  Google Scholar 

  54. H. N. I. Nassar, Nitrate and nitrite ion removal from aqueous solutions by activated carbon prepared from olive stones, 2012.

  55. M. Mohsenipour, S. Shahid, K. Ebrahimi, J. Chem. 2015, 1 (2015)

    Article  Google Scholar 

  56. A. Mandal, S.K. Das, J. Environ. Chem. Eng. 7, 103259 (2019)

    Article  CAS  Google Scholar 

  57. D.W. Cho, C.M. Chon, Y. Kim, B.H. Jeon, F.W. Schwartz, E.S. Lee, H. Song, Chem. Eng. J. 175, 298 (2011)

    Article  CAS  Google Scholar 

  58. Y. Xi, M. Mallavarapu, R. Naidu, Appl. Clay Sci. 48, 92 (2010)

    Article  CAS  Google Scholar 

  59. J.M. Harmand, H. Ávila, R. Oliver, L. Saint-André, E. Dambrine, Geoderma 158, 216 (2010)

    Article  CAS  Google Scholar 

  60. N. Öztürk, T.E. Bektaş, J. Hazard. Mater. 112, 155 (2004)

    Article  PubMed  Google Scholar 

  61. W. Bekele, G. Faye, N. Fernandez, Int. J. Res. Pharm. Chem. 4, 192 (2014)

    Google Scholar 

  62. E.C. Lima, A. Hosseini-Bandegharaei, I. Anastopoulos, J. Mol. Liq. 280, 298 (2019)

    Article  CAS  Google Scholar 

  63. E.C. Lima, A. Hosseini-Bandegharaei, J.C. Moreno-Piraján, I. Anastopoulos, J. Mol. Liq. 273, 425 (2019)

    Article  CAS  Google Scholar 

  64. Y. Dehmani, A.A. Alrashdi, H. Lgaz, T. Lamhasni, S. Abouarnadasse, I.M. Chung, Arab. J. Chem. 13, 5474 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by MESRSFC and CNRST–Rabat-Morocco, within the framework of the PPR2 project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hamid Ziyat or Mohammed Naciri Bennani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ziyat, H., Elmzioui, S., Naciri Bennani, M. et al. Kinetic, isotherm, and mechanism investigations of the removal of nitrate and nitrite from water by the synthesized hydrotalcite Mg–Al. Res Chem Intermed 47, 2605–2627 (2021). https://doi.org/10.1007/s11164-021-04414-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-021-04414-w

Keywords

Navigation