Skip to main content

Advertisement

Log in

Ultrasound-based synthesis of ZnO·Ag2O3 nanocomposite: characterization and evaluation of its antimicrobial and anticancer properties

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

In this research, a facile method using ultrasound waves was used to synthesize the ZnO·Ag2 nanocomposite. It was completely characterized by powder X-ray diffraction (PXRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), dynamic light scattering (DLS) and zeta potential. PXRD showed the synthesis of ZnO and Ag2O3 in hexagonal and orthorhombic crystal structure. Microscopic images confirmed the formation of cubic, hexagonal, rectangular and spherical morphologies. The DLS size analysis showed that the mean dynamic size of the nanocomposite was 100.5 nm. Agar diffusion method was used for antimicrobial test and the results showed high antibacterial activity of ZnO·Ag2O3 nanocomposite against two major classes of pathogenic bacteria (i.e., Escherichia coli, Klebsiella pneumonia, Staphylococcus epidermidis and Staphylococcus aureus). Anticancer properties of ZnO·Ag2O3 nanocomposite using MTT assay showed that ZnO·Ag2O3 nanocomposite is toxic for human liver cancer cell line (HepG2). This effect depends on time and concentration of ZnO·Ag2O3 nanocomposite. The cell toxicity effects of ZnO·Ag2O3 nanocomposite also examined against HDF normal cell, in which the data demonstrated the lower cytotoxicity of nanocomposite compared to the HepG2 cell line. These results support the potential application of ZnO·Ag2O3 nanocomposites in antimicrobial agents, liver carcinoma treatments and also merit future translational research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

PXRD:

Powder X-ray diffraction

FESEM:

Field emission scanning electron microscopy

TEM:

Transmission electron microscopy

DLS:

Dynamic light scattering

NMP:

N-Methyl-2-pyrrolidone

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

References

  1. A. Rahdar, S. Rahdar and G. Labuto, Environ. Sci. Pollut. Res. (2020)

  2. M.E.T. Yazdi, J. Khara, M.R. Housaindokht, H.R. Sadeghnia, S.E. Bahabadi, M.S. Amiri, H. Mosawee, D. Taherzadeh, M. Darroudi, IET Nanobiotechnol. 13, 2 (2018)

    Google Scholar 

  3. A.M. de Souza Antunes, M.S. de MenezesAlencar, C.H. da Silva, J. Nunes, F. Maria Lins Mendes, Recent Pat.Nanotechnol. 6, 1 (2012)

    Google Scholar 

  4. G. Benckiser, Nanotechnology (Springer, Berlin, 2017), p. 19

    Book  Google Scholar 

  5. H. Sharifan, J. Moore, X. Ma, Ecotoxicol. Environ. Saf. 191, 110177 (2020)

    Article  CAS  Google Scholar 

  6. P. Sivakumar, M. Lee, Y.S. Kim, M.S. Shim, J. Mater. Chem. B 6, 30 (2018)

    Article  Google Scholar 

  7. A. Murali, P. Sarswat, H. Sohn, Mater. Today Chem. 11, 60–68 (2019)

    Article  CAS  Google Scholar 

  8. N. Geetha, S. Sivaranjani, A. Ayeshamariam, J. Suthan Kissinger, M. Valan Arasu and M. Jayachandran, Fluid Mech. Open Access 3 (2016)

  9. K. Ravichandrika, P. Kiranmayi, R. Ravikumar, Int. J. Pharm. Pharm. Sci 4, 4 (2012)

    Google Scholar 

  10. G.J. Nohynek, E.K. Dufour, Arch. Toxicol. 86, 7 (2012)

    Article  Google Scholar 

  11. X. Ma, H. Sharifan, F. Dou and W. Sun, Chem. Eng. J. 384 (2020)

  12. B. Burkenstock, (Google Patents, 2010)

  13. C. van Hees and B. Naafs, Reinier de Graaf Groep (2009)

  14. Z. Saremi, R. Yari, I. Khodadadi, S.M. Tabatabaei, J. Skin Stem Cell 3, 4 (2016)

    Article  Google Scholar 

  15. P. Uikey, K. Vishwakarma, Int. J. Emerg. TechnolComput. Sci Electron. 21, 2 (2016)

    Google Scholar 

  16. A.K. Barui, R. Kotcherlakota, C.R. Patra, Inorganic Frameworks as Smart Nanomedicines (Elsevier, Amsterdam, 2018), p. 239

    Book  Google Scholar 

  17. P. Pardeshi, A. Nawale, V. Mathe, Y. Lahir and P. Dongre, Bio Nano Front. 2, (2014)

  18. Z. Hu, W.L. Chan, Y.S. Szeto, J. Appl. Polym. Sci. 108, 1 (2008)

    Article  Google Scholar 

  19. S. Tripathi, G. Mehrotra, P. Dutta, Bull. Mater. Sci. 34, 1 (2011)

    Article  Google Scholar 

  20. C.-N. Lok, C.-M. Ho, R. Chen, Q.-Y. He, W.-Y. Yu, H. Sun, P.K.-H. Tam, J.-F. Chiu, C.-M. Che, J. Biol. Inorg. Chem. 12, 4 (2007)

    Article  Google Scholar 

  21. G.Y. Nigussie, G.M. Tesfamariam, B.M. Tegegne, Y.A. Weldemichel, T.W. Gebreab, D.G. Gebrehiwot, and G.E. Gebremichel, Int. J. Photoenergy. (2018)

  22. P.J.P. Espitia, N.F.F. Soares, J.S.R. Coimbra, N.J. Andrade, R.S. Cruz, E.A.A. Medeiros, Food Bioprocess. Technol. 5, 1447 (2012)

    Article  CAS  Google Scholar 

  23. B.B. Fonseca, P.L.A.P.A. Silva, A.C.A. Silva, N.O. Dantas, A.T. Paula, O.C.L. Olivieri, M.E. Beletti, D.A. Rossi, L.R. Goulart, Front. Microb. 10, 217 (2019)

    Article  Google Scholar 

  24. Y. Xie, Y. He, P.L. Irwin, T. Jin, X. Shiet, Appl. Environ. Microbiol. 77(7), 2325 (2011)

    Article  CAS  Google Scholar 

  25. R. Pati, R.K. Mehta, S. Mohanty, A.P. MTech, M. Sengupta, B. Vaseeharan, C. Goswami, A. Sonawane, Nanomed. Nanotechnol. Biol. Med. 10(6), 1195 (2014)

    Article  CAS  Google Scholar 

  26. X. Wang, H.F. Wu, Q. Kuang, R.B. Huang, Z.X. Xie, L.S. Zheng, Langmuir. 26(4), 2774 (2010)

    Article  CAS  Google Scholar 

  27. S. Pal, Y.K. Tak, J.M. Song, Appl. Environ. Microbiol. 73(6), 1712 (2007)

    Article  CAS  Google Scholar 

  28. B.B. Straumal, B. Baretzky, A. Mazilkin, S. Protasova, A. Myatiev, P. Straumal, J. Eur. Ceram. Soc. 29(10), 1963 (2009)

    Article  CAS  Google Scholar 

  29. B.B. Straumal, A.A. Mazilkin, S.G. Protasova, A.A. Myatiev, P.B. Straumal, B. Baretzkya, Acta Mater. 56(20), 6246 (2008)

    Article  CAS  Google Scholar 

  30. M. Rahimi-Nasrabadi, M. Rostami, F. Ahmadi, A.F. Shojaie, M.D. Rafiee, J. Mater. Sci. Mater. Electron. 27, 11 (2016)

    Article  Google Scholar 

  31. F. Razi, S. Zinatloo-Ajabshir and M. Salavati-Niasari, J. Mol. Liq. 225 (2017)

  32. A. Aqeel, S. Ghoshal, G. Krishnan and H. Bakhtiar, Mater. Lett. (2020)

  33. Y. Yang, H. Dong, Y. Wang, Y. Wang, N. Liu, D. Wang and X. Zhang, Inorg. Chem. Commun. 86 (2017)

  34. X.-Y. Hou, X.-L. Yan, X. Wang and Q.-G. Zhai, J. Solid State Chem. 263 (2018)

  35. J. Tian, B. Lin, Y. Sun, X. Zhang and H. Yang, Mater. Lett. 206 (2017)

  36. W.-J. Son, J. Kim, J. Kim and W.-S. Ahn, Chem. Commun. 47 (2008)

  37. M.E.T. Yazdi, M.S. Amiri, H.A. Hosseini, R.K. Oskuee, H. Mosawee, K. Pakravanan, M. Darroudi, Bull. Mater. Sci. 42, 4 (2019)

    Article  Google Scholar 

  38. M.E. TaghavizadehYazdi, A. Hamidi, M.S. Amiri, R. KazemiOskuee, H.A. Hosseini, A. Hashemzadeh, M. Darroudi, Mater. Technol. 34, 8 (2019)

    Google Scholar 

  39. A. Le Bail, L.M. Cranswick, I. Madsen, A. Fitch, R. Allmann, C. Giacovazzo, A. Altomare, J.K. Cockcroft, R. Caliandro and P. Norby, Powder Diffr. Theory Pract. (R. Soc. Chem.) (2008)

  40. D.B. Williams, C.B. Carter, Transmission Electron Microscopy (Springer, Berlin, 1996), p. 3

    Book  Google Scholar 

  41. R. Xu Particuology 6, 2 (2008)

  42. P. Nisar, N. Ali, L. Rahman, M. Ali, Z.K. Shinwari, J. Biol. Inorg. Chem. 24, 7 (2019)

    Article  Google Scholar 

  43. R.G. Packirisamy, C. Govindasamy, A. Sanmugam, S. Venkatesan, H.-S. Kim and D. Vikraman, Int. J. Biol. Macromol. 138 (2019)

  44. F. Javadi, M.E.T. Yazdi, M. Baghani, A. Es-Haghi, Mater. Res. Express. 6, 6 (2019)

    Google Scholar 

  45. X. Wu, H. Li and N. Xiao, J. Photochem. Photobiol. B 187 (2018)

  46. T. Munawar, S. Yasmeen, M. Hasan, K. Mahmood, A. Hussain, A. Ali, M. Arshad and F. Iqbal, Ceram. Int. (2020)

  47. M. Zarei, E. Karimi, E. Oskoueian, A. Es-Haghi and M.E.T. Yazdi, Nutr. Cancer (2020)

  48. A. Hamidi, M.E.T. Yazdi, M.S. Amiri, H.A. Hosseini and M. Darroudi, Res. Chem. Intermed. (2019)

  49. F. Jalilian, A. Chahardoli, K. Sadrjavadi, A. Fattahi and Y. Shokoohinia, Adv. Powder Technol. (2020)

  50. G.L. Vanti, M. Kurjogi, K. Basavesha, N.L. Teradal, S. Masaphy and V.B. Nargund, J. Biotechnol. 309 (2020)

  51. S.H. Mousavi, J. Tavakkol-Afshari, A. Brook, I. Jafari-Anarkooli, Food Chem. Toxicol. 47, 8 (2009)

    Google Scholar 

  52. A. Hosseini, E. Bakhtiari, A.K. Rad, S. Shahraki, S.H. Mousavi, S. Havakhah, M.S. Amiri, Iran. J. Pharm. Res. 16, 3 (2017)

    Google Scholar 

  53. E. Ahmadian, S.M. Dizaj, E. Rahimpour, A. Hasanzadeh, A. Eftekhari, J. Halajzadeh and H. Ahmadian, Mater. Sci. Eng. C. 93 (2018)

  54. J. Tavakkol-Afshari, A. Brook, S.H. Mousavi, Food Chem. Toxicol. 46, 11 (2008)

    Article  Google Scholar 

  55. K. Rajendran, S. Sen, G. Suja, S. LakshmanaSenthil, T. Vinoth Kumar, Coll. Surf. B. 157, 101 (2017)

    Article  CAS  Google Scholar 

  56. T.K. Jana, S.K. Jana, A. Kumar, K. De, R. Maiti, A.K. Mandal, T. Chatterjee, B. Chatterjee, P. Chakrabarti, K. Chatterjee, Coll. Surf. B 177, 512 (2019)

    Article  CAS  Google Scholar 

  57. M.E.T. Yazdi, M.S. Amiri, S. Akbari, M. Sharifalhoseini, F. Nourbakhsh, M. Mashreghi, E. Yousefi, M.R. Abbasi, M. Modarres, A. Es-haghi, BioNanoScience 1, 7 (2020)

    Google Scholar 

  58. M.E.T. Yazdi, M. Darroudi, M.S. Amiri, H.A. Hosseini, F. Nourbakhsh, M. Mashreghi, M. Farjadi, S. M. Mousavi Kouhi, S. H. Mousavi, Micro Nano Lett. 1 (2020)

  59. D. Dharmaraj, M. Krishnamoorthy, K. Rajendran, K. Karuppiah, J. Annamalai, K.R. Durairaj, P. Santhiyagu, K. Ethiraj, J. Drug Deliv. Sci. Technol. 102111 (2020)

  60. T. Zhang, E. Du, Y. Liu, J. Cheng, Z. Zhang, Y. Xu, S. Qi, Y. Chen, Int. J. Nanomed. 15, 1457 (2020)

    Article  CAS  Google Scholar 

  61. H.K. Abdelhakim, E. El-Sayed, F.B. Rashidi, J. Appl. Microb. 128(6), 1634 (2020)

    Article  CAS  Google Scholar 

  62. T.S. Vijayakumar, S. Mahboob, G. Bupesh, S. Vasanth, K.A. Al-Ghanim, F. Al-Misned, M. Govindarajan, J. Drug Deliv. Sci. Technol. 60, 102015 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors appreciatively acknowledge for support and assistance provided by Mashhad University of Medical Sciences (Grant No. 981595).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Hadi Mousavi.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taghavizadeh Yazdi, M.E., Nourbakhsh, F., Mashreghi, M. et al. Ultrasound-based synthesis of ZnO·Ag2O3 nanocomposite: characterization and evaluation of its antimicrobial and anticancer properties. Res Chem Intermed 47, 1285–1296 (2021). https://doi.org/10.1007/s11164-020-04355-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-020-04355-w

Keywords

Navigation