Skip to main content
Log in

Electrochemical degradation of bromophenol blue on porous PbO2–ZrO2 composite electrodes

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The electrochemical performance of porous PbO2–ZrO2 composite electrode was studied with bromophenol blue (BPB) as the simulated pollutant. In the process of electrochemical degradation, the operational parameters were optimized, such as initial BPB concentration, current density, initial pH values and supporting electrolyte (Na2SO4) concentration. The results showed that the BPB and COD removal efficiency could reach 96.9% and 74.7%, respectively, after 90 min of electrolysis under the degradation parameters of initial BPB concentration of 30 mg L−1, current density of 40 mA cm−2, pH value of 4 and Na2SO4 solution of 0.07 mol L−1. The kinetic curves made clear that the electrochemical degradation of BPB followed pseudo-first-order reaction with high correlation coefficients (R2 > 0.99). Initial BPB concentration and applied current density greatly affected the electrochemical process, followed by the pH value, and the influence of supporting electrolyte was minimal. Ultraviolet–visible spectra and high-performance liquid chromatography analysis indicated that a small amount of intermediates were produced during the degradation process. After electrochemical degradation for 90 min, BPB and intermediates were almost completely removed. In terms of multiple aspects, electrochemical degradation had a good development prospect in the treatment of BPB wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Nezamzadehejhieh, H. Zabihimobarakeh, J. Ind. Eng. Chem. 20, 1421 (2014)

    CAS  Google Scholar 

  2. S. Memon, A.A. Bhatti, A.A. Bhatti, Polycycl. Aromat. Compd. 39, 238 (2019)

    CAS  Google Scholar 

  3. A. Mohammadzadeh, M. Ramezani, A.M. Ghaedi, J. Taiwan Inst. Chem. Eng. 59, 275 (2016)

    CAS  Google Scholar 

  4. H. Mazaheri, M. Ghaedi, A. Asfaram, S. Hajati, J. Mol. Liq. 219, 667 (2016)

    CAS  Google Scholar 

  5. N.K. Temel, R. Gürkan, F. Ayan, Desalin. Water Treat. 57, 21083 (2015)

    Google Scholar 

  6. M. Guli, L. Mei, H. Zhe, J. Yao, S. Mann, J. Mater. Sci. 50, 7026 (2015)

    CAS  Google Scholar 

  7. H. Khan, A.K. Khalil, A. Khan, K. Saeed, N. Ali, Korean J. Chem. Eng. 33, 1 (2016)

    Google Scholar 

  8. S. Kushwaha, L. Bahadur, J. Lumin. 161, 426 (2015)

    CAS  Google Scholar 

  9. M.A. Farrukh, F. Imran, S. Ali, M. Khaleeq-Ur-Rahman, I.I. Naqvi, Russ. J. Appl. Chem. 88, 1523 (2015)

    CAS  Google Scholar 

  10. Z. Matinzadeh, F. Shahgoli, H. Abbasi, M. Ghoranneviss, M.K. Salem, J. Theor. Appl. Phys. 11, 97 (2017)

    Google Scholar 

  11. M. Ghaedi, A.M. Ghaedi, E. Negintaji, A. Ansari, A. Vafaei, M. Rajabi, J. Ind. Eng. Chem. 20, 1793 (2014)

    CAS  Google Scholar 

  12. A.A. El-Zahhar, N.S. Awwad, E.E. El-Katori, J. Mol. Liq. 199, 454 (2014)

    CAS  Google Scholar 

  13. M. Panizza, G. Cerisola, Chem. Rev. (Washington, DC, U. S.) 109, 6541 (2009)

    CAS  Google Scholar 

  14. E. Brillas, C.A. Martínez-Huitle, Appl. Catal. B 166, 603 (2015)

    Google Scholar 

  15. H. Olvera-Vargas, N. Oturan, E. Brillas, D. Buisson, G. Esposito, M.A. Oturan, Chemosphere 117, 644 (2014)

    CAS  PubMed  Google Scholar 

  16. H.T.K. Madsen, E.G. Søgaard, J. Muff, Chemosphere 109, 84 (2014)

    CAS  PubMed  Google Scholar 

  17. N. Tran, P. Drogui, T.L. Doan, T.S. Le, H.C. Nguyen, Environ. Technol. 38, 1 (2017)

    Google Scholar 

  18. A. Dargahi, A. Ansari, D. Nematollahi, G. Asgari, R. Shokoohi, M.R. Samarghandi, RSC Adv. 9, 5064 (2019)

    CAS  Google Scholar 

  19. X. Tang, J. Shuang, J. Li, H. Na, Pet. Sci. Technol. 36, 1 (2018)

    CAS  Google Scholar 

  20. F.N. Chianeh, J.B. Parsa, Desalin. Water Treat. 57, 1 (2015)

    Google Scholar 

  21. F.C. Walsh, Trans. Inst. Met. Finish. 97, 28 (2019)

    CAS  Google Scholar 

  22. F.L. Souza, M.R. Lanza, J. Llanos, M.A. Rodrigo, J. Environ. Manag. 158, 36 (2015)

    CAS  Google Scholar 

  23. F. Guenfoud, M. Mokhtari, H. Akrout, Diam. Relat. Mater. 46, 8 (2014)

    CAS  Google Scholar 

  24. X. Li, D. Pletcher, F.C. Walsh, Chem. Soc. Rev. 40, 3879 (2011)

    CAS  PubMed  Google Scholar 

  25. S. Saaidia, R. Delimi, Z. Benredjem, A. Mehellou, A. Djemel, K. Barbari, Sep. Sci. 52, 13 (2017)

    Google Scholar 

  26. K. Gurung, M.C. Ncibi, M. Shestakova, M. Sillanpää, Appl. Catal. B 221, 329 (2018)

    CAS  Google Scholar 

  27. O. Shmychkova, T. Luk’Yanenko, A. Yakubenko, R. Amadelli, A. Velichenko, Appl. Catal. B 162, 346 (2015)

    CAS  Google Scholar 

  28. G.F. Pereira, R.C. Rocha-Filho, N. Bocchi, S.R. Biaggio, Electrochim. Acta 179, 588 (2015)

    CAS  Google Scholar 

  29. J.F. Recio, P. Herrasti, I. Sirés, A.N. Kulak, D.V. Bavykin, C. Ponce-de-León, F.C. Walsh, Electrochim. Acta 56, 5158 (2011)

    CAS  Google Scholar 

  30. H. Sayahi, F. Mohsenzadeh, M. Hamadanian, Res. Chem. Intermed. 43, 1 (2017)

    Google Scholar 

  31. Y. Yao, H. Dong, N. Yu, X. Chen, L. Jiao, C. Zhao, Russ. J. Electrochem. 53, 411 (2017)

    CAS  Google Scholar 

  32. K.M. Lee, B.K. Jung, Y.G. Ko, D.H. Shin, Mater. Res. Innov. 18, 407 (2014)

    Google Scholar 

  33. E.H. Sun, Y.H. Choa, T. Sekino, T. Adachi, K. Niihara, Mater. Res. Innov. 6, 105 (2002)

    CAS  Google Scholar 

  34. Y. Rho, S. Kang, J. Kim, K. Kim, J. Nanosci. Nanotechnol. 20, 557 (2019)

    Google Scholar 

  35. J. Li, G. Luo, L.J. He, J. Xu, J. Lyu, Crit. Rev. Anal. Chem. 48, 47 (2017)

    CAS  PubMed  Google Scholar 

  36. J. Chen, Y. Xia, Q. Dai, Electrochim. Acta 165, 277 (2015)

    CAS  Google Scholar 

  37. T. Chen, H. Huang, H.Y. Ma, D.L. Kong, Electrochim. Acta 88, 79 (2013)

    CAS  Google Scholar 

  38. S. Song, J. Fan, Z. He, L. Zhan, Z. Liu, J. Chen, X. Xu, Electrochim. Acta 55, 3606 (2010)

    CAS  Google Scholar 

  39. J.L. Wang, L.J. Xu, Crit. Rev. Environ. Sci. Technol. 42, 251 (2012)

    Google Scholar 

  40. C.A. Martinezhuitle, E. Brillas, Appl. Catal. B 87, 105 (2009)

    CAS  Google Scholar 

  41. Y. Wang, Z. Shen, X. Chen, J. Hazard. Mater. 178, 867 (2010)

    CAS  PubMed  Google Scholar 

  42. Y. Wang, C. Shen, M. Zhang, B.T. Zhang, Y.G. Yu, Chem. Eng. J. (Lausanne) 296, 79 (2016)

    CAS  Google Scholar 

  43. Q. Dai, J. Zhou, X. Meng, D. Feng, C. Wu, J. Chen, Chem. Eng. J. (Lausanne) 289, 239 (2016)

    CAS  Google Scholar 

  44. L. Yu, C. Yong, W. Han, X. Sun, J. Li, L.J. Wang, RSC Adv. 6, 19848 (2016)

    CAS  Google Scholar 

  45. L. Wei, B. Li, W. Ding, J. Wu, C. Zhang, D. Fu, Diam. Relat. Mater. 50, 1 (2014)

    Google Scholar 

  46. J. Hong, T. Na, S.G. Yang, Y.Z. Liu, C. Sun, Desalination 214, 62 (2007)

    CAS  Google Scholar 

Download references

Acknowledgements

The project was supported by the National Natural Science Foundation of China (No. 21576065).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingwu Yao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Wei, F., Zhao, Q. et al. Electrochemical degradation of bromophenol blue on porous PbO2–ZrO2 composite electrodes. Res Chem Intermed 46, 1389–1404 (2020). https://doi.org/10.1007/s11164-019-04040-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-019-04040-7

Keywords

Navigation