Skip to main content
Log in

Effect of zero-valent iron on biological denitrification in the autotrophic denitrification system

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

This study investigated nitrate removal using biological denitrification by the iron-reducing bacteria strain CC76 combined with zero-valent iron (ZVI) in simulated groundwater under anaerobic conditions. The mechanism of nitrate reduction as well as the process of iron cycling by strain CC76 and ZVI were studied. During growth experiments, the strain CC76 showed the ability to utilize Fe2+ (electron donor) produced from the stimulated corrosion of ZVI for the nitrate removal. ZVI exerted inhibitive effects on the growth of strain CC76 in the early stage. However, the strain CC76 was able to tolerate the presence of ZVI in the long term. Moreover, three factors (temperature, initial pH, and ZVI concentration) were selected as effective factors and were optimized using a central composite design of response surface methodology. Based on the statistical analysis, a temperature of 30.44 °C, initial pH of 6.11, and ZVI concentration of 5.89 g/L were determined to be the optimum values. The effect of Fe2+/ZVI ratio was also explored and compared with ZVI alone, a certain amount of a mixture of Fe2+ and ZVI showed a higher nitrate removal ability. Moreover, scanning electron microscopy and X-ray diffraction analyses showed the corrosion of ZVI occurred after reaction in the autotrophic denitrification system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. P. Mikuška, Z. Večeřa, Anal. Chim. Acta 495(1), 225 (2003)

    Article  CAS  Google Scholar 

  2. A. Rezaee, H. Godini, S. Dehestani, A. Khavanin, Iran. J. Environ. Health Eng. 5(2), 125 (2008)

    CAS  Google Scholar 

  3. A. Kapoor, T. Viraraghavan, J. Environ. Eng. 123(123), 371 (1997)

    Article  CAS  Google Scholar 

  4. D.J. Wan, H.J. Liu, J.H. Qu, P.J. Lei, S.H. Xiao, Y.N. Hou, Bioresour. Technol. 100, 142 (2009)

    Article  CAS  PubMed  Google Scholar 

  5. Y.X. Zhao, B.G. Zhang, C.P. Feng, F.Y. Huang, P. Zhang, Z.Y. Zhang, Y.N. Yang, N. Sugiura, Bioresour. Technol. 107, 159 (2012)

    Article  CAS  PubMed  Google Scholar 

  6. K.L. Straub, W.A. Schönhuber, B.E. Buchholz-Cleven, B. Schink, Geomicrobiol. J. 21, 371 (2004)

    Article  CAS  Google Scholar 

  7. S.K. Chaudhuri, J.G. Lack, J.D. Coates, Appl. Environ. Microbiol. 67, 2844 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. E.M. Muehe, S. Gerhardt, B. Schink, A. Kappler, FEMS Microbiol. Ecol. 70(3), 335 (2009)

    Article  CAS  PubMed  Google Scholar 

  9. Y.K. Sun, J.X. Li, T.L. Huang, X.H. Guan, Water Res. 100, 277 (2016)

    Article  CAS  PubMed  Google Scholar 

  10. S.F. Cheng, S.C. Wu, Chemosphere 41(8), 1263 (2000)

    Article  CAS  PubMed  Google Scholar 

  11. H.L. Lien, W.X. Zhang, Colloids Surf. A Physicochem. Eng. Asp. 191(1), 97 (2001)

    Article  CAS  Google Scholar 

  12. Y.H. Huang, T.C. Zhang, Water Res. 38(11), 2631 (2004)

    Article  CAS  PubMed  Google Scholar 

  13. G.C. Yang, H.L. Lee, Water Res. 39(5), 884 (2005)

    Article  CAS  PubMed  Google Scholar 

  14. J.F. Su, C. Cheng, T.L. Huang, F. Ma, J.S. Lu, S.C. Shao, J. Taiwan Inst. Chem. Eng. 66, 106 (2016)

    Article  CAS  Google Scholar 

  15. J.F. Su, S.C. Zheng, T.L. Huang, F. Ma, S.C. Shao, S.F. Yang, L.N. Zhang, Bioresour. Technol. 192, 654 (2015)

    Article  CAS  PubMed  Google Scholar 

  16. X. Ren, L. He, J. Cheng, J. Chang, PLoS ONE 9(2), 87578 (2014)

    Article  CAS  Google Scholar 

  17. C.L. Wan, S. Ding, C. Zhang, X.J. Tan, W.G. Zou, X. Liu, X. Yang, Sep. Purif. Technol. 180, 1 (2017)

    Article  CAS  Google Scholar 

  18. S. Vani, P. Binod, M. Kuttiraja, R. Sindhu, S.V. Sandhya, Bioresour. Technol. 112(5), 300 (2012)

    Article  CAS  PubMed  Google Scholar 

  19. T.L. Kirschling, K.B. Gregory, J. Minkley, G. Edwin, G.V. Lowry, R.D. Tilton, Environ. Sci. Technol. 44, 3474 (2010)

    Article  CAS  PubMed  Google Scholar 

  20. Z.M. Xiu, K.B. Gregory, G.V. Lowry, P.J. Alvarez, Environ. Sci. Technol. 44(19), 7647 (2010)

    Article  CAS  PubMed  Google Scholar 

  21. M. Auffan, W. Achouak, J. Rose, M. Roncato, C. Chanéac, D.T. Waite, A. Masion, J.C. Woicik, M.R. Wiesner, J. Bottero, Environ. Sci. Technol. 42, 6730 (2008)

    Article  CAS  PubMed  Google Scholar 

  22. Y. An, Q. Dong, K. Zhang, Chemosphere 103(5), 86 (2014)

    Article  CAS  PubMed  Google Scholar 

  23. C.P. Huang, H.W. Wang, P.C. Chiu, Water Res. 32, 2257 (1998)

    Article  CAS  Google Scholar 

  24. H.R. Dong, F. Zhao, Q. He, Y.K. Xie, Y.L. Zeng, L.H. Zhang, L. Tang, G.M. Zeng, Sep. Purif. Technol. 175, 376 (2017)

    Article  CAS  Google Scholar 

  25. S.M.J. Mirazimi, F. Rashchi, M. Saba, Sep. Purif. Technol. 116, 175 (2013)

    Article  CAS  Google Scholar 

  26. R.M. Gholami, S.M. Mousavi, S.M. Borghei, J. Ind. Eng. Chem. 18, 218 (2011)

    Article  CAS  Google Scholar 

  27. L. Zhang, Y. Liu, G.M. Ai, L.L. Miao, H.Y. Zheng, Z.P. Liu, Bioresour. Technol. 108, 35 (2012)

    Article  CAS  PubMed  Google Scholar 

  28. S. Bae, K. Hanna, Environ. Sci. Technol. 49(17), 10536 (2015)

    Article  CAS  PubMed  Google Scholar 

  29. C. Ruangchainikom, C.H. Liao, J. Anotai, M.T. Lee, Water Res. 40, 195 (2006)

    Article  CAS  PubMed  Google Scholar 

  30. L. Smith, S.P. Buckwalter, D.A. Repert, D.N. Miller, Water Res. 39, 2014 (2005)

    Article  CAS  PubMed  Google Scholar 

  31. J.L. Campos, S. Carvalho, R. Portela, A. Mosquera-Corral, R. Méndez, Bioresour. Technol. 99, 1293 (2008)

    Article  CAS  PubMed  Google Scholar 

  32. J. Zhang, Z. Hao, Z. Zhang, Y. Yang, X. Xu, Process. Saf. Environ. 88(6), 439 (2010)

    Article  CAS  Google Scholar 

  33. Y.K. Xie, H.R. Dong, G.M. Zeng, L. Tang, Z. Jiang, C. Zhang, J.M. Deng, L.H. Zhang, Y. Zhang, J. Hazard. Mater. 321, 390 (2017)

    Article  CAS  PubMed  Google Scholar 

  34. J.T. Nurmi, P.G. Tratnyek, V. Sarathy, D.R. Baer, J.E. Amonette, K. Pecher, C. Wang, J.C. Linehan, D.W. Matson, R.L. Penn, M.D. Driessen, Environ. Sci. Technol. 39, 1221 (2005)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research work was partly supported by the National Natural Science Foundation of China (NSFC) (Nos. 51678471, 51778523).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun feng Su.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, J.s., Lian, T.t. & Su, J.f. Effect of zero-valent iron on biological denitrification in the autotrophic denitrification system. Res Chem Intermed 44, 6011–6022 (2018). https://doi.org/10.1007/s11164-018-3472-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-018-3472-3

Keywords

Navigation