Skip to main content
Log in

Effect of surface modification temperature on the hydrodesulfurization performance of Ni2P/MCM-41 catalyst

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Highly active MCM-41-supported nickel phosphide catalysts for hydrodesulfurization (HDS) were synthesized by surface modification, in which the surface of supported Ni2P catalysts were directly modified at different temperatures by air instead of being passivated by an O2/N2 mixture. In addition, the prepared catalysts need not be activated under high temperature in H2 flow prior to the HDS reaction as in the conventional method. X-ray diffraction, X-ray photoelectron spectroscopy, N2-adsorption specific surface area measurements, CO chemisorption and transmission electron microscope were used to characterize the resulting catalysts. The effect of modification temperature on HDS performance of the catalysts was investigated. The results showed that the surface modification could promote the formation of smaller and more uniform Ni2P particles and the exposure of more Ni atoms. The modification method is simple and energy-saving, and the catalyst modified by air at 150 °C presents a dibenzothipohene conversion of 95.4%, which is 6.8% higher than that of a catalyst passivated by O2/N2 mixture followed by high-temperature and H2 pretreatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S.T. Oyama, T. Gott, H. Zhao, Y.K. Lee, Catal. Today 143, 94 (2009)

    Article  CAS  Google Scholar 

  2. S.T. Oyama, J. Catal. 216, 343 (2003)

    Article  CAS  Google Scholar 

  3. G.N. Yun, Y.K. Lee, Appl. Catal. B 150–151, 647 (2014)

    Article  Google Scholar 

  4. H. Song, J. Wang, Z.D. Wang, H.L. Song, F. Li, Z.S. Jin, J. Catal. 311, 257 (2014)

    Article  CAS  Google Scholar 

  5. W. Wang, X. Li, Z. Sun, A. Wang, Y. Liu, Y. Chen, X. Duan, Appl. Catal. A 509, 45 (2016)

    Article  CAS  Google Scholar 

  6. V. Teixeira da Silva, L.A. Sousa, R.M. Amorimb, L. Andrini, S.J.A. Figueroa, F.G. Requejo, F.C. Vicentini, J. Catal. 279, 88 (2011)

    Article  CAS  Google Scholar 

  7. L. Yang, X. Li, A.J. Wang, R. Prins, Y. Wang, Y.Y. Chen, X.P. Duan, J. Catal. 317, 144 (2014)

    Article  CAS  Google Scholar 

  8. R. Prins, M. Bussell, Catal. Lett. 142, 1413 (2012)

    Article  CAS  Google Scholar 

  9. A. Wang, L. Ruan, Y. Teng, X. Li, M. Lu, J. Ren, Y. Wang, Y. Hu, J. Catal. 229, 314 (2005)

    Article  CAS  Google Scholar 

  10. X.P. Duan, Y. Teng, A.J. Wang, V.M. Kogan, X. Li, Y. Wang, J. Catal. 261, 232 (2009)

    Article  CAS  Google Scholar 

  11. H.I. Meléndez-Ortiz, L.A. García-Cerda, Y. Olivares-Maldonado, G. Castruita, J.A. Mercado-Silva, Y.A. Perera-Mercado, Ceram. Int. 38, 6353 (2012)

    Article  Google Scholar 

  12. J.A. Cecilia, A. Infantes-Molina, E. Rodríguez-Castellón, A. Jiménez-López, J. Catal. 263, 4 (2009)

    Article  CAS  Google Scholar 

  13. S.T. Oyama, X. Wang, Y.K. Lee, W.J. Chun, J. Catal. 221, 263 (2004)

    Article  CAS  Google Scholar 

  14. J. Chen, Y. Chen, Q. Yang, K. Li, C. Yao, Catal. Commun. 11, 571 (2010)

    Article  CAS  Google Scholar 

  15. L. Song, S. Zhang, Q. Wei, Catal. Commun. 12, 1157 (2011)

    Article  CAS  Google Scholar 

  16. A.I. d’Aquino, S.J. Danforth, T.R. Clinkingbeard, B. Ilic, L. Pullan, M.A. Reynolds, B.D. Murray, M.E. Bussell, J. Catal. 335, 204 (2016)

    Article  Google Scholar 

  17. S.J. Sawhill, K.A. Layman, D.R.V. Wyk, M.H. Engelhard, C. Wang, M.E. Bussell, J. Catal. 231, 300 (2005)

    Article  CAS  Google Scholar 

  18. J.N. Kuhn, N. Lakshminarayanan, U.S. Ozkan, J. Mol. Catal. A 282, 9 (2008)

    Article  CAS  Google Scholar 

  19. Q. Guan, X. Cheng, R. Li, W. Li, J. Catal. 299, 1 (2013)

    Article  CAS  Google Scholar 

  20. I.I. Abu, K.J. Smith, J. Catal. 241, 356 (2006)

    Article  CAS  Google Scholar 

  21. K. Sutthiumporn, S. Kawi, Int. J. Hydrogen Energ. 36, 14435 (2011)

    Article  CAS  Google Scholar 

  22. J.A. Rodriguez, J.Y. Kim, J.C. Hanson, S.J. Sawhill, M.E. Bussell, J. Phys. Chem. B 107, 6276 (2003)

    Article  CAS  Google Scholar 

  23. R. Li, Q.X. Guan, R.C. Wei, S.Q. Yang, Z. Shu, Y. Dong, J. Chen, W. Li, J. Phys. Chem. C 119, 2557 (2015)

    Article  CAS  Google Scholar 

  24. S.T. Oyama, X. Wang, Y.K. Lee, K. Bando, F.G. Requejo, J. Catal. 210, 207 (2002)

    Article  CAS  Google Scholar 

  25. S.T. Oyama, Y.K. Lee, J. Catal. 258, 395 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the National Natural Science Foundation of China (21276048), the Education Department of Heilongjiang Province (12541060) and the Graduate Innovation Project of Northeast Petroleum University, China (No. YJSCX2016-019NEPU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, H., Yu, Q., Jiang, N. et al. Effect of surface modification temperature on the hydrodesulfurization performance of Ni2P/MCM-41 catalyst. Res Chem Intermed 44, 3629–3640 (2018). https://doi.org/10.1007/s11164-018-3329-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-018-3329-9

Keywords

Navigation