Skip to main content

Advertisement

Log in

Enhanced photocatalytic reduction of Cr(VI) by manganese-doped anatase titanium dioxide

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Nano-TiO2 is frequently used as an optimal photocatalyst, since it is nontoxic, low cost, and environmentally friendly, especially for its photocatalytic oxidation action. However, its photocatalytic reducing action has not been widely researched. In this study, TiO2 doped with different concentrations of manganese was prepared by the sol–gel method and characterized using different techniques to analyze the surface structure, phase composition, and surface elements of the different materials. To investigate the photocatalytic activity, Mn–TiO2 was used for photocatalytic reduction of Cr(VI). Moreover, various organic pollutants were added to determine whether they enhanced the photocatalytic reduction of Cr(VI). The experiments indicated that the presence of Mn in TiO2 could enhance its photocatalytic reduction action, especially at 0.02 % molar ratio. Manganese ions doped in TiO2 behaved as electron accumulation sites. In addition, pH value, and photocatalyst dosage were investigated to analyze their effects on the photocatalytic reduction action. The results show that lower pH value improved the efficiency of photocatalytic reduction; there were no significant changes in the photocatalytic reduction rate with dosage above 1.0 g/L. In the presence of different electron donors (organic pollutants as hole scavengers), the photocatalytic reduction of Cr(VI) was generally improved. In short, manganese-doped TiO2 exhibited improved photocatalytic reduction activity, especially in cooperation with various organics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. J.J. Testa, M.A. Grela, I. Marta, Environ. Sci. Technol. 38, 1589–1594 (2004)

    Article  CAS  Google Scholar 

  2. R.J. Kieber, J.D. Willey, S.D. Zvalaren, Environ. Sci. Technol. 36, 5321–5327 (2002)

    Article  CAS  Google Scholar 

  3. J. Yoon, G. Amy, Y. Yoon, Water Sci. Technol. 51, 327 (2005)

    CAS  Google Scholar 

  4. M. Costa, Toxicol. Appl. Pharmacol. 188, 1–5 (2003)

    Article  CAS  Google Scholar 

  5. A.A. Muxel, S.M.N. Gimenez, F.A. de Souza Almeida, CLEAN—Soil Air, Water 39, 289–295 (2011)

    Article  CAS  Google Scholar 

  6. M. Qamar, M.A. Gondal, Z.H. Yamani, J. Mol. Catal. A: Chem. 341, 83–88 (2011)

    Article  CAS  Google Scholar 

  7. Y. Xing, X. Chen, D. Wang, Environ. Sci. Technol. 41, 1439–1443 (2007)

    Article  CAS  Google Scholar 

  8. M.M. Momeni, M. Hakimian, A. Kazempour, Ceram. Int. 41, 13692–13701 (2015)

    Article  CAS  Google Scholar 

  9. L. Li, F. Jiang, J.J. Liu, J. Environ. Sci. Health, Part A 47, 327–336 (2012)

    Article  CAS  Google Scholar 

  10. C.B. Xia, C.H. Liu, D.X. Wu, Adv. Mater. Res. 557, 1057–1061 (2012)

    Article  Google Scholar 

  11. B. Dou, V. Dupont, W. Pan, Chem. Eng. J. 166, 631–638 (2011)

    Article  CAS  Google Scholar 

  12. N. Aman, T. Mishra, J. Hait, J. Hazard. Mater. 186, 360–366 (2011)

    Article  CAS  Google Scholar 

  13. X. Zhang, L. Song, X. Zeng, Energy Procedia 17, 422–428 (2012)

    Article  CAS  Google Scholar 

  14. M. Qamar, M.A. Gondal, Z.H. Yamani, J. Hazard. Mater. 187, 258–263 (2011)

    Article  CAS  Google Scholar 

  15. M.M. Momeni, Y. Ghayeb, Z. Ghonchegi, Ceram. Int. 41, 8735–8741 (2015)

    Article  CAS  Google Scholar 

  16. M.M. Momeni, Appl. Surf. Sci. 357, 160–166 (2015)

    Article  CAS  Google Scholar 

  17. M.M. Momeni, Y. Ghayeb, J. Mater. Sci.: Mater. Electron. 26, 1560–1567 (2015)

    CAS  Google Scholar 

  18. M.M. Momeni, Y. Ghayeb, J. Mater. Sci.: Mater. Electron. 26, 5509–5517 (2015)

    CAS  Google Scholar 

  19. M.M. Momeni, Y. Ghayeb, Surf. Eng. 31, 259–264 (2015)

    Article  CAS  Google Scholar 

  20. M.M. Momeni, Appl. Phys. A 119, 1413–1422 (2015)

    Article  CAS  Google Scholar 

  21. A. Nakaruk, C.Y.W. Lin, D. Channei, J. Sol-Gel Sci. Technol. 61, 1–4 (2012)

    Article  Google Scholar 

  22. S. Rengaraj, S. Venkataraj et al., Appl. Catal. B: Environ. 77, 157–165 (2007)

    Article  CAS  Google Scholar 

  23. Q.R. Deng, X.H. Xia, M.L. Guo, Mater. Lett. 65, 2051–2054 (2011)

    Article  CAS  Google Scholar 

  24. A.L. Castro, M.R. Nunes, M.D. Carvalho, J. Solid State Chem. 182, 1838–1845 (2009)

    Article  CAS  Google Scholar 

  25. A. Kubacka, B. Bachiller-Baeza, G. Colón et al., J. Phys. Chem. C 113, 8553–8555 (2009)

    Article  CAS  Google Scholar 

  26. X. Shen, J. Guo, Z. Liu et al., Appl. Surf. Sci. 254, 4726–4731 (2008)

    Article  CAS  Google Scholar 

  27. A. Nakaruk, H. Chen, A. Waibel, e-J. Surf. Sci. Nanotechnol. 10, 103–106 (2012)

    Article  CAS  Google Scholar 

  28. Y. Xu, B. Lei, L. Guo, J. Hazard. Mater. 160, 78–82 (2008)

    Article  CAS  Google Scholar 

  29. K. Nakata, A. Fujishima, J. Photochem. Photobiol. C 13, 169–189 (2012)

    Article  CAS  Google Scholar 

  30. W. Choi, A. Termin, M.R. Hoffmann, J. Phys. Chem. 98, 13669–13679 (1994)

    Article  Google Scholar 

  31. A. Fujishima, X. Zhang, C. R. Chim. 9, 750–760 (2006)

    Article  CAS  Google Scholar 

  32. M. Zhou, J. Yu, B. Cheng, J. Hazard. Mater. 137, 1838–1847 (2006)

    Article  CAS  Google Scholar 

  33. A. Fujishima, T.N. Rao, D.A. Tryk, J. Photochem. Photobiol. C 1, 1–21 (2000)

    Article  CAS  Google Scholar 

  34. D.P. Das, K. Parida, B.R. De, J. Mol. Catal. A: Chem. 245, 217–224 (2006)

    Article  CAS  Google Scholar 

  35. J. Yoon, E. Shim, S. Bae, J. Hazard. Mater. 161, 1069–1074 (2009)

    Article  CAS  Google Scholar 

  36. R.J. Iwanowski, M. Heinonen, E.H. Janik, Chem. Phys. Lett. 387, 110–115 (2004)

    Article  CAS  Google Scholar 

  37. X. Wang, S.O. Pehkonen, K. Ajay, Ind. Eng. Chem. Res. 43, 1665–1672 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support for this research was provided by the Key Natural Science Foundation, transformation mechanism and control principle of nitrogenous pollutant in the urban water supply system (Grant No. 51438006), the Priority Academic Program Development of Jiangsu Higher Education Institutions (RAPD), the Scientific Research Starting Foundation for Returned Overseas Chinese Scholars, Ministry of Education, China (grant no. 1061-51200312), the National Science Fund for Distinguished Young Scholars (grant no. 50925932), Water Conservancy Research Funds, JiangSu (1061-51146012), and National Major Equipment Development Special Funds (2014YQ060773).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianzhong Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, Dl., Zhu, J., Ji, M. et al. Enhanced photocatalytic reduction of Cr(VI) by manganese-doped anatase titanium dioxide. Res Chem Intermed 42, 5413–5429 (2016). https://doi.org/10.1007/s11164-015-2375-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-015-2375-9

Keywords

Navigation