Skip to main content
Log in

Synthesis, spectroscopic investigations and computational study of monomeric and dimeric structures of 2-methyl-4-quinolinol

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The present study aimed to determine an efficient and solvent-free method to synthesize 2-methyl-4-quinolinol (2MQ, also known as 4-hydroxy-2-methylquinoline) and includes spectroscopic investigations and computational studies. Molecular geometry and vibrational wavenumbers of 2MQ were investigated using the density functional (DFT/B3LYP) method with 6-311++G(d,p) and 6-311++G(2d,p) basis sets. According to calculations, the keto form of 2MQ is more stable than the annual form, and the dimeric conformation is predicted to be more stable than the monomeric conformations. A detailed analysis of the nature of the hydrogen bonding, using topological parameters such as electronic charge density, Laplacian, kinetic and potential energy density evaluated at the bond critical point, is also presented. The 1H nuclear magnetic resonance chemical shifts of the molecule were calculated by the GIAO method. The molecule orbital contributions were studied by using total (TDOS) and partial (PDOS) density of states. The UV–visible spectrum of the compound was recorded and the electronic properties, such as HOMO and LUMO energies, were investigated by the time-dependent DFT (TD-DFT) approach. The linear polarizability (α) and the first-order hyperpolarizability (β) values of the investigated molecule were computed using DFT quantum mechanical calculations. The results show that the 2MQ molecule may have a nonlinear optical comportment with non-zero values. The stability and charge delocalization of the molecule was studied by natural bond orbital analysis. In addition, a molecular electrostatic potential map of the title compound was studied for predicting the reactive sites. Local reactivity descriptors, such as Fukui functions, local softness and electrophilicity indices analyses, were studied to determine the reactive sites within the molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. R.D. Larsen, E.G. Corley, A.O. King, J.D. Carrol, P. Davis, T.R. Verhoeven, P.J. Reider, M. Labelle, J.Y. Gauthier, Y.B. Xiang, R.J. Zamboni, J. Org. Chem. 61, 3398 (1996)

    Article  CAS  Google Scholar 

  2. Y.L. Chen, K.C. Fang, J.Y. Sheu, H.S.L. Su, C.C. Tzeng, J. Med. Chem. 44, 2374 (2001)

    Article  CAS  Google Scholar 

  3. M.P. Maguire, K.R. Sheets, K. Mcvety, A.P. Spada, A. Zilberstein, J. Med. Chem. 37, 2129 (1994)

    Article  CAS  Google Scholar 

  4. G. Jones, A.R. Katritzky, C.W. Ress, Comprehensive Heterocyclic Chemistry, vol. 5 (Pergamon, New York, 1996), p. 167

    Google Scholar 

  5. V. Nadaraj, S.T. Selvi, Indian J. Chem. 46B, 1203 (2007)

    CAS  Google Scholar 

  6. S.B. Sapkal, K.F. Shelke, B.B. Shingate, M. S. J. Korean Chem. Soc. 54, 723 (2010)

    Article  CAS  Google Scholar 

  7. S. Yuan, K. Zhang, J. Xia, Asian J. Chem. 25, 5535 (2013)

    CAS  Google Scholar 

  8. A. Nilsen, G.P. Miley, I.P. Forquer, M.W. Mather, K. Katneni, Y. Li, S. Pou, A.M. Pershing, A.M. Stickles, E. Ryan, J.X. Kelly, J.S. Doggett, K.L. White, D.J. Hinrichs, R.W. Winter, S.A. Charman, L.N. Zakharov, I. Bathurst, J.N. Burrows, A.B. Vaidya, M.K. Riscoe, J. Med. Chem. 57, 3834 (2014)

    Article  Google Scholar 

  9. M. Conrad, L. Limpach, Ber. 20, 944 (1887)

    Article  Google Scholar 

  10. M. Vakili, S.F. Tayyari, A. Kanaani, A.-R. Nekoei, S. Salemi, H. Miremad, A.R. Berenji, R.E. Sammelson, J. Mol. Struct. 998, 99 (2011)

    Article  CAS  Google Scholar 

  11. A. Kanaani, D. Ajloo, H. Kiyani, M. Farahani, J. Mol. Struct. 1063, 30 (2014)

    Article  CAS  Google Scholar 

  12. S.A. Pourmousavi, S.S. Kazemi, Monatsh. Chem. 143, 917 (2011)

    Article  Google Scholar 

  13. A.D. Becke, J. Chem. Phys. 98, 5648 (1993)

    Article  CAS  Google Scholar 

  14. C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988)

    Article  CAS  Google Scholar 

  15. B. Miehlich, A. Savin, H. Stoll, H. Preuss, Chem. Phys. Lett. 157, 200 (1989)

    Article  CAS  Google Scholar 

  16. M.J. Frisch et al., Gaussian 03, Revision C.01 (Gaussian, Inc., Wallingford, 2004), p. 255

    Google Scholar 

  17. H.B. Schlegel, J. Comput. Chem. 3, 214 (1982)

    Article  CAS  Google Scholar 

  18. A.P. Scott, L. Radom, J. Phys. Chem. 100, 16503 (1996)

    Google Scholar 

  19. M. Karabacak, M. Cinar, M. Kurt, Spectrochim. Acta A 74, 1197 (2009)

    Article  Google Scholar 

  20. R. Dennington, T. Keith, Millam Gaussview Version 5 (Semichem Inc., Shawnee Mission KS, 2009)

    Google Scholar 

  21. M.H. Jamroz, Vibrational Energy Distribution Analysis: VEDA 4 Program (Warsaw, Poland, 2004)

    Google Scholar 

  22. K. Wolinski, J.F. Hilton, P. Pulay, J. Am. Chem. Soc. 112, 8251 (1990)

    Article  CAS  Google Scholar 

  23. N.M. O’Boyle, A.L. Tenderholt, K.M. Langer, J. Comput. Chem. 29, 839 (2008)

    Article  Google Scholar 

  24. E.D. Glendening, A.E. Reed, J.E. Carpenter, F. Weinhold, NBO Version 3.1 (Gaussian Inc, Pittsburgh, 2003)

    Google Scholar 

  25. F.W. Biegler-König, J. Schönbohm, D. Bayles, J. Comp. Chem. 22, 545 (2001)

    Article  Google Scholar 

  26. R.W.F. Bader, Atoms in Molecules. A Quantum Theory (Oxford University Press, New York, 1990)

    Google Scholar 

  27. B. Mukhopadhyay, Tetrahedron Lett. 47, 4337 (2006)

    Article  CAS  Google Scholar 

  28. V.K. Rajput, B. Mukhopadhyay, Tetrahedron Lett. 47, 5939 (2006)

    Article  CAS  Google Scholar 

  29. B. Roy, B. Mukhopadhyay, Tetrahedron Lett. 48, 3783 (2007)

    Article  CAS  Google Scholar 

  30. V.K. Rajput, B. Roy, B. Mukhopadhyay, Tetrahedron Lett. 47, 6987 (2006)

    Article  CAS  Google Scholar 

  31. M.J. Mphahlele, A.M. El-Nahas, J. Mol. Struct. 688, 129 (2004)

    Article  CAS  Google Scholar 

  32. F.H. Allen, Acta Crystallogr. B 58, 380 (2002)

    Article  Google Scholar 

  33. M.J. Mphahlele, A.M. El-Nahas, J. Mol. Struct. 688, 129 (2004)

    Article  CAS  Google Scholar 

  34. H.T. Flakus, A. Miros, P.G. Jones, J. Mol. Struct. 604, 29 (2002)

    Article  CAS  Google Scholar 

  35. S. Gunasekaran, R. Thilak kumar, S. Ponnusamy, Spectrochim. Acta A 65, 1041 (2006)

    Article  CAS  Google Scholar 

  36. I.L. Tocan, M.S. Woolley, J.C. Otero, J.I. Marcos, J. Mol. Struct. 470, 241 (1998)

    Article  Google Scholar 

  37. H.T. Flakus, A. Tyl, Vib. Spectrosc. 63, 440 (2012)

    Article  CAS  Google Scholar 

  38. H.T. Flakus, A. Tyl, A. Maslankiewicz, J. Phys. Chem. A 115, 102 (2011)

    Google Scholar 

  39. S. Arjunan, S. Mohan, Spectrochim. Acta A 72, 436 (2009)

    Article  CAS  Google Scholar 

  40. J.C. Evans, Spectrochim. Acta A 16, 428 (1960)

    Article  CAS  Google Scholar 

  41. J. Mohan, Organic Spectroscopy-Principle and Applications, 2nd edn. (Narosa Publishing House, New Delhi, 2000)

    Google Scholar 

  42. V.K. Rastogi, M.A. Palafox, K. Lang, S.K. Singhal, R.K. Soni, R. Sharma, Indian J. Pure Appl. Phys. 44, 653 (2006)

    CAS  Google Scholar 

  43. N.P.G. Roeges, A Guide to the Complete Interpretation of Infrared Spectra of Organic Structure (Wiley, New York, 1994)

    Google Scholar 

  44. V. Balachandran, K. Parimala, Spectrochim. Acta A 102, 30 (2013)

    Article  CAS  Google Scholar 

  45. N. Sundaraganesan, H. Saleem, S. Mohan, M. Ramalingam, V. Sethuraman, Spectrochim. Acta A 62, 740 (2005)

    Article  CAS  Google Scholar 

  46. M. Silverstein, G.C. Basseler, C. Morill, Spectrometric Identification of Organic Compounds (Wiley, New York, 1981)

    Google Scholar 

  47. G. Socrates (ed.), Infrared Characteristic Group Frequencies (Wiley, England, 1980)

    Google Scholar 

  48. R.M. Silverstein, G.C. Basseler, C. Morill (eds.), Spectroscopic Identification of Organic compounds (Wiley, New York, 1981)

    Google Scholar 

  49. T. Kupka, R. Wrzalik, G. Pasterna, K. Pasterny, J. Mol. Struct. 616, 17 (2002)

    Article  CAS  Google Scholar 

  50. V. Arjunan, S. Sakiladevi, T. Rani, C.V. Mythili, S. Mohan, Spectrochim. Acta A 88, 220 (2012)

    Article  CAS  Google Scholar 

  51. M. Karabacak, D. Karagoz, M. Kurt, Spectrochim. Acta A 72, 1076 (2009)

    Article  Google Scholar 

  52. V. Krishnakumar, N. Surumbakuzhali, Spectrochim. Acta A 71, 1810 (2009)

    Article  CAS  Google Scholar 

  53. G. Gunasekaran, E. Sailatha, Indian J. Pure Appl. Phys. 47, 259 (2009)

    CAS  Google Scholar 

  54. M. Snehalatha, C. Ravikumar, I.J. Hubert, N. Sekar, V.S. Jayakumar, Spectrochim. Acta A 72, 654 (2009)

    Article  CAS  Google Scholar 

  55. M. Szafran, A. Komasa, E.B. Adamska, J. Mol. Struct. (Theochem) 827, 101 (2007)

    Article  CAS  Google Scholar 

  56. J. Choo, S. Kim, H. Joo, Y. Kwon, J. Mol. Struct. (Theochem) 587, 1 (2002)

    Article  CAS  Google Scholar 

  57. R. Meenakshi, Mol. Simul. 36, 425 (2010)

    Article  CAS  Google Scholar 

  58. R.S. Mulliken, J. Chem. Phys. 23, 1833 (1995)

    Article  Google Scholar 

  59. L. Xiao-Hong, L. Xiang-Ru, Z. Xian-Zhou, Comput. Theor. Chem. 969, 27 (2011)

    Article  Google Scholar 

  60. T. Sakamoto, Y. Kondo, D. Uchiyama, H. Yamanaka, Tetrahedron 47, 5111 (1991)

    Article  CAS  Google Scholar 

  61. N. Subramania, N. Sundaraganesan, J. Jayabharathi, Spectrochim. Acta A 76, 259 (2010)

    Article  Google Scholar 

  62. E. Scrocco, J. Tomasi, Adv. Quantum Chem. 11, 115 (1978)

    Article  CAS  Google Scholar 

  63. X. Li, X. Liu, Z. Wu, H. Zhang, J. Phys. Chem. A 112, 11190 (2008)

    Article  CAS  Google Scholar 

  64. H.-Y. Wang, L.-F. Chen, X.-L. Zhu, C. Wang, Y. Wan, H. Wu, Spectrochim. Acta A 121, 355 (2014)

    Article  CAS  Google Scholar 

  65. M.E. Casida, K.C. Casida, D.R. Salahub, Int. J. Quantum Chem. 70, 933 (1998)

    Article  CAS  Google Scholar 

  66. D.A. Kleinman, Phys. Rev. 126, 1977 (1962)

    Article  CAS  Google Scholar 

  67. H. Sekino, R.J. Bartlett, J. Chem. Phys. 84, 2726 (1986)

    Article  CAS  Google Scholar 

  68. J. Henriksson, J. Saue, P. Norman, J. Chem. Phys. 128, 24105 (2008)

    Article  Google Scholar 

  69. S. Debrus, H. Ratajczak, J. Venturini, N. Pincon, J. Baran, J. Barycki, T. Glowiak, A. Pietraszko, Syn. Metals 127, 99 (2002)

    Article  CAS  Google Scholar 

  70. M.A. Palafox, Int. J. Quantum Chem. 77, 661 (2000)

    Article  CAS  Google Scholar 

  71. J. Bevan Ott, J. Boerio-goates, Calculations from Statistical Thermodynamics (Academic Press, Waltham, 2000)

    Google Scholar 

  72. R. Zhang, B. Dub, G. Sun, Y. Sun, Spectrochim. Acta A 75, 1115 (2010)

    Article  Google Scholar 

  73. J. Padmanabhan, R. Parthasarathi, V. Subramaniaan, P.K. Chattaraj, J. Phys. Chem. A 111, 1358 (2007)

    Article  CAS  Google Scholar 

  74. R. Parthasarathi, J. Padmanabhan, V. Subramanian, B. Maiti, P.K. Chattraj, J. Phys. Chem. A 107, 10346 (2003)

    Article  CAS  Google Scholar 

  75. R. Parthasarathi, J. Padmanabhan, V. Subramanian, B. Maiti, P.K. Chaltraj, Curr. Sci. 86, 535 (2004)

    CAS  Google Scholar 

  76. R. Parthasarathi, J. Padmanabhan, V. Subramanian, U. Sarkar, B. Maiti, P.K. Chattraj, Internet Electron. J. Mol. Des. 2, 798 (2003)

    CAS  Google Scholar 

  77. R.G. Parr, W. Yang, J. Am. Chem. Soc. 106, 4049 (1984)

    Article  CAS  Google Scholar 

  78. U. Koch, P.L.A. Popelier, J. Phys. Chem. 99, 9747 (1995)

    Article  CAS  Google Scholar 

  79. E. Espinosa, E. Molins, C. Lecomte, Chem. Phys. Lett. 285, 170 (1998)

    Article  CAS  Google Scholar 

  80. D.E. Hibbs, J. Overgaard, R.O. Plitz, Org. Biomol. Chem. 1, 1191 (2003)

    Article  CAS  Google Scholar 

  81. M.T. Caroll, C. Chang, R.F.W. Bader, Mol. Phys. 63, 387 (1988)

    Article  Google Scholar 

  82. S.W. Paine, A. Salam, Chem. Phys. 331, 61 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support of Damghan University is acknowledged. The authors also wish to extend thanks to Prof. Jamroz for providing VEDA4 software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seied Ali Pourmousavi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 411 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pourmousavi, S.A., Kanaani, A., Ghorbani, F. et al. Synthesis, spectroscopic investigations and computational study of monomeric and dimeric structures of 2-methyl-4-quinolinol. Res Chem Intermed 42, 1237–1274 (2016). https://doi.org/10.1007/s11164-015-2084-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-015-2084-4

Keywords

Navigation