Skip to main content

Advertisement

Log in

A density functional study of oxygen vacancy formation on α-Fe2O3(0001) surface and the effect of supported Au nanoparticles

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

We present PBE + U calculations of gold metal nanoparticles supported on the α-Fe2O3(0001) surface. We find that the periphery atoms of Au10 particles become oxidized through the dissociation of O2 at the metal–oxide interface. The presence of a metal particle is also shown to substantially lower the defect formation energy for surface oxygen vacancies in the oxide support, particularly when the nanoparticle is in this semi-oxidized state. The defect formation energy is found to be dependent on the distance of the vacancy from the metal particle so that the lowest defect formation energies are calculated for oxygen vacancies created at the under the gold nanoparticle. For Au10/α-Fe2O3(0001) creating the vacancy under the cluster requires a defect formation energy of 2.13 eV [relative to ½O2(g)] and this is lowered to 0.86 eV when the perimeter of the particle is oxidized. These values are significantly lower than that for the bare α-Fe2O3(0001) surface of 3.04 eV. Oxidation of the periphery of the Au cluster to form an Au10O6 particle leads to even lower vacancy formation energies for the surface oxides and much lower than the energy required to abstract an O ion from the base of the cluster.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. G. Buxbaum, Industrial Inorganic Pigments, 2nd edn. (Wiley, Weinheim, 2008)

    Google Scholar 

  2. M. Sugimoto, J. Am. Ceram. Soc. 82, 269 (2004)

    Article  Google Scholar 

  3. E.C. Kim, J. Magnet. 17, 83 (2012)

    Article  Google Scholar 

  4. N. Gupta, A. Tripathi, Gold Bull. 34, 120 (2001)

    Article  CAS  Google Scholar 

  5. N. Lopez, T.V.W. Janssens, B.S. Clausen, Y. Xu, M. Mavrikakis, T. Bligaard, J.K. Nørskov, J. Catal. 223, 232 (2004)

    Article  CAS  Google Scholar 

  6. M. Mavrikakis, P. Stoltze, J.K. Nørskov, Catal. Lett. 64, 101 (2000)

    Article  CAS  Google Scholar 

  7. Y. Xu, M. Mavrikakis, J. Phys. Chem. B 107, 9298 (2003)

    Article  CAS  Google Scholar 

  8. T.W. Janssens, B. Clausen, B. Hvolbæk, H. Falsig, C. Christensen, T. Bligaard, J. Nørskov, Top. Catal. 44, 15 (2007)

    Article  CAS  Google Scholar 

  9. M. Boronat, A. Corma, J. Catal. 284, 138 (2011)

    Article  CAS  Google Scholar 

  10. I.X. Green, W. Tang, M. Neurock, J.T. Yates, Science 333, 736 (2011)

    Article  CAS  Google Scholar 

  11. L.M. Molina, B. Hammer, Phys. Rev. B 69, 155424 (2004)

    Article  CAS  Google Scholar 

  12. L.M. Molina, M.D. Rasmussen, B. Hammer, J. Chem. Phys. 120, 7673 (2004)

    Article  CAS  Google Scholar 

  13. L.M. Molina and B. Hammer Appl. Catal. A-Gen 291, 21 (2005)

  14. J. Guzman, B.C. Gates, J. Am. Chem. Soc. 126, 2672 (2004)

    Article  CAS  Google Scholar 

  15. G. Bond, D. Thompson, Gold Bull 33, 41 (2000)

    Article  CAS  Google Scholar 

  16. H.H. Kung, M.C. Kung, C.K. Costello, J. Catal. 216, 425 (2003)

    Article  CAS  Google Scholar 

  17. M.M. Schubert, S. Hackenberg, A.C. van Veen, M. Muhler, V. Plzak, R.J. Behm, J. Catal. 197, 113 (2001)

    Article  CAS  Google Scholar 

  18. E. Wahlström, N. Lopez, R. Schaub, P. Thostrup, A. Rønnau, C. Africh, E. Lægsgaard, J.K. Nørskov, F. Besenbacher, Phys. Rev. Lett. 90, 026101 (2003)

    Article  CAS  Google Scholar 

  19. A.A. Herzing, C.J. Kiely, A.F. Carley, P. Landon, G.J. Hutchings, Science 321, 1331 (2008)

    Article  CAS  Google Scholar 

  20. M. Valden, X. Lai, D.W. Goodman, Science 281, 1647 (1998)

    Article  CAS  Google Scholar 

  21. K.L. Howard, D.J. Willock, Faraday Discuss. 152, 135 (2011)

    Article  CAS  Google Scholar 

  22. A.F. Carley, D.J. Morgan, N. Song, M.W. Roberts, S.H. Taylor, J.K. Bartley, D.J. Willock, K.L. Howard, G.J. Hutchings, Phys. Chem. Chem. Phys. 13, 2528 (2011)

    Article  CAS  Google Scholar 

  23. H.Y. Kim, G. Henkelman, J. Phys. Chem. Lett. 4, 216 (2013)

    Article  CAS  Google Scholar 

  24. A. Bruix, A. Migani, G.N. Vayssilov, K.M. Neyman, J. Libuda, F. Illas, Phys. Chem. Chem. Phys. 13, 11384 (2011)

    Article  CAS  Google Scholar 

  25. G. Kresse, J. Hafner, Phys. Rev. B 47, 558 (1993)

    Article  CAS  Google Scholar 

  26. G. Kresse, J. Hafner, Phys. Rev. B 49, 14251 (1994)

    Article  CAS  Google Scholar 

  27. G. Kresse, J. Furthmüller, Comp. Mater. Sci. 6, 15 (1996)

    Article  CAS  Google Scholar 

  28. G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996)

    Article  CAS  Google Scholar 

  29. P.E. Blochl, Phys. Rev. B 50, 17953 (1994)

    Article  Google Scholar 

  30. G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999)

    Article  CAS  Google Scholar 

  31. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  CAS  Google Scholar 

  32. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 78, 1396 (1997)

    Article  CAS  Google Scholar 

  33. S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, A.P. Sutton, Phys. Rev. B 57, 1505 (1998)

    Article  CAS  Google Scholar 

  34. A. Rohrbach, J. Hafner, G. Kresse, Phys. Rev. B 70, 125426 (2004)

    Article  CAS  Google Scholar 

  35. G. Henkelman, A. Arnaldsson, H. Jónsson, Comp. Mat. Sci. 36, 354 (2006)

    Article  Google Scholar 

  36. W. Tang, E. Sanville, G. Henkelman, J. Phys. Cond. Matter 21, 084204 (2009)

    Article  CAS  Google Scholar 

  37. W. Song, E.J.M. Hensen, Catal. Sci. Tech. 3, 3020 (2013)

    Article  CAS  Google Scholar 

  38. R. Coquet, K.L. Howard, D.J. Willock, in Metal oxide catalysis, ed. by S.D. Jackson, J.S. Hargreaves (Wiley, New York, 2008), p. 323

    Chapter  Google Scholar 

  39. C. Ruberto, Y. Yourdshahyan, B.I. Lundqvist, Phys. Rev. B 67, 195412 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Computational facilities supplied by Wales’ national supercomputing service provider, High Performance Computing (HPC) Wales, are gratefully acknowledged. Via our membership of the UK’s HPC Materials Chemistry Consortium, which is funded by EPSRC (EP/L000202), this work made use of the facilities of HECToR and ARCHER, the UK’s national high-performance computing service, which is funded by the Office of Science and Technology through EPSRC’s High End Computing Programme. The authors would like to thank Johnson Matthey for their funding support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Willock.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoh, S.W., Thomas, L., Jones, G. et al. A density functional study of oxygen vacancy formation on α-Fe2O3(0001) surface and the effect of supported Au nanoparticles. Res Chem Intermed 41, 9587–9601 (2015). https://doi.org/10.1007/s11164-015-1984-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-015-1984-7

Keywords

Navigation