Skip to main content
Log in

Production of carboxylic acids from glucose with metal oxides under hydrothermal conditions

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Production of low molecular weight carboxylic acids from glucose with the addition of metal oxides under hydrothermal conditions was investigated. The results showed that CuO, as an oxidant can significantly promote the production of lactic acid, and can also promote the production of acetic acid and formic acid. Fe3O4 can also enhance lactic acid production as a catalyst. The highest yields of 37.1, 9.4, and 4.9 % for lactic acid, acetic acid, and formic acid were achieved, respectively, which occurred at 300 °C for 60 s with CuO 1.5 mmol, NaOH 2.5 M, and water filling 35 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J.N. Chheda, G.W. Huber, J.A. Dumesic, Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals. Angew. Chem. Int. Ed. 46, 7164–7183 (2007)

    Article  CAS  Google Scholar 

  2. G.W. Huber, J. Chheda, C.B. Barrett, J.A. Dumesic, Production of liquid alkanes for transportation fuel from biomass-derived carbohydrates. Science 308, 1446–1450 (2005)

    Article  CAS  Google Scholar 

  3. T.P. Garlson, T.P. Vispute, G.W. Huber, Green gasoline by catalytic fast pyrolysis of solid biomass derived compound. ChemSusChem 1, 397–400 (2008)

    Article  Google Scholar 

  4. R.W. Shaw, Y.B. Brill, A.A. Clifford, C.A. Eckert, E.U. Franck, Supercritical water a medium for chemistry. Chem. Eng. News 69, 26–39 (1991)

    CAS  Google Scholar 

  5. N. Akiya, P.E. Savage, The roles of water for chemical reactions in high-temperatures water. Chem. Rev. 102, 2725–2750 (2002)

    Article  CAS  Google Scholar 

  6. Z. Srokol, A.G. Bouche, A.E. Estrik, R.C.J. Strik, T. Maschmeyer, J.A. Peters, Hydrothermal upgrading of biomass to biofuel studies on some monosaccharide model. Carbohydr. Res. 339, 1717–1726 (2004)

    Article  CAS  Google Scholar 

  7. K. Hisanori, F. Jin, Y. yiuyi, M. Takehiko, H. Enomoto, Formation of lactic acid from glycolaldehyde by alkaline hydrothermal reaction. Carbohydr. Res. 341, 2619–2623 (2006)

    Article  Google Scholar 

  8. Z. Shiping, F. Jin, H. Jiajun, H. Zhibao, Improvement of lactic acid from cellulose with addition of Zn/Ni/C under hydrothermal conditions. Bioresour. Technol. 102, 1998–2003 (2011)

    Article  Google Scholar 

  9. A. Yousif, S. Xu, Z.F. Jin, F. Yan, Hydrothermal conversion of glucose into lactic acid with nickel as catalyst. Adv. Mater. Res. 347, 3873–3876 (2012)

    Google Scholar 

  10. F. Jin, A. Kishita, T. Moriya, H. Enomoto, N. Sato, A new process for producing Ca/Mg acetate deicer with Ca/Mg waste and acetic acid produced by wet oxidation of organic waste. Chem. Lett. 31, 88–89 (2002)

    Article  Google Scholar 

  11. Z. Xu, F. Jin, C. Jianglin, Y. Guodong, Z. Yalei, Z. Jianfu, AIP Conf. Proc. 1251, 384–387 (2010)

    Google Scholar 

  12. F. Jin, Y. Jun, G. Li, K. Ashushi, T. Kazuyuki, H. Enomoto, Hydrothermal conversion of carbohydrate biomass into formic acid at mild temperatures. Green Chem. 10, 612–615 (2008)

    Article  CAS  Google Scholar 

  13. S.S. Bang, D. Johnston, Environmental effects of sodium acetate/formate deicer, ice sheartrade mark. Environ. Contam. Toxicol. 35, 580–587 (1998)

    Article  CAS  Google Scholar 

  14. J. Tardio, S. Bhargava, J. Prasad, D.B. Akolekar, Catalytic wet oxidation of the sodium salts of citric, lactic malic and tartaric acids in highly alkaline, high ionic strength solution. Top. Catal. 33, 193–199 (2005)

    Article  CAS  Google Scholar 

  15. H. Suzuki, J. Cao, F. Jin, A. Kishida, H. Enomoto, Wet oxidation of lignin model compounds and acetic acid production. J. Mater. Sci. 41, 1591–1597 (2006)

    Article  CAS  Google Scholar 

  16. F.M. Jin, J. Yun, G.M. Li, A. Kishita, K. Tohji, H. Enomoto, Hydrothermal conversion of carbohydrate biomass into formic acid at mild temperatures. Green Chem. 10(6), 612–615 (2008)

    Article  CAS  Google Scholar 

  17. O. Ayumu, T. Ochia, K. Kajiyoshi, K. Yanagisawa, A new chemical process for catalytic conversion of d-glucose into lactic acid and gluconic acid. Appl. Catal. A 343, 49–54 (2008)

    Article  Google Scholar 

  18. F.M. Jin, J. Zheng, H. Enomoto, T. Moriya, N. Sato, H. Higashijima, Hydrothermal process for increasing acetic acid yield from lignocellulosic wastes. Chem. Lett. 5, 504–505 (2002)

    Article  Google Scholar 

  19. F.M. Jin, A. Kishita, T. Moriya, H. Enomoto, Kinetics of oxidation of food wastes with H2O2 in supercritical water. J. Supercrit. Fluids 9, 251–262 (2001)

    Article  Google Scholar 

  20. G.D. Yao, X. Zeng, Q.J. Li, Y.Q. Wang, Z.Z. Jing, F.M. Jin, Direct and highly efficient reduction of NiO into Ni with cellulose under hydrothermal conditions. J. Ind. Eng. Chem. Res. 51, 7853–7858 (2012)

    Article  CAS  Google Scholar 

  21. Q. Li, G. Yao, X. Zeng, Z. Jing, Z. Huo, F. Jin, Facile and green production of Cu from CuO using cellulose under hydrothermal conditions. J. Ind. Eng. Chem. Res. 51, 3129–3136 (2012)

    Article  CAS  Google Scholar 

  22. M. Lu, X. Zeng, J. Cao, Z. Huo, F. Jin, Production of formic acid and acetic acid from phenol by hydrothermal oxidation. Res. Chem. Intermed. 37, 201–209 (2011)

    Article  CAS  Google Scholar 

  23. J.C. Speck Jr, The lobry de Bruyn-Alberda van Ekenstein transformation. Adv. Carbohydr. Chem. 13, 63–103 (1953)

    Google Scholar 

  24. A.F. Carley, P.R. Davies, G.G. Mariotti, The oxidation of formic acid to carbonate at Cu(110) surfaces. Surf. Sci. 401(3), 400–411 (1998)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (Grant Nos. 21077078 and 21277091), and the National High Technology Research and Development Program (“863” Program) of China (No. 2009AA063903).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fangming Jin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adam, Y.S., Fang, Y., Huo, Z. et al. Production of carboxylic acids from glucose with metal oxides under hydrothermal conditions. Res Chem Intermed 41, 3201–3211 (2015). https://doi.org/10.1007/s11164-013-1425-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-013-1425-4

Keywords

Navigation