Skip to main content
Log in

In-situ FTIR spectroscopic study of the mechanism of photocatalytic reduction of NO with methane over Pt/TiO2 photocatalysts

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Photo-selective catalytic reduction of nitric oxide (NO) with methane (CH4) over TiO2 and Pt/TiO2 photocatalysts was studied at reaction temperatures of 25, 50, and 100 °C. The activity of Pt/TiO2 in NO reduction was better than that of TiO2. Conversion of NO by use of Pt/TiO2 and UV irradiation was up to 86.4 %. In-situ Fourier-transform infrared spectroscopy was successfully used to monitor the photoreaction process on TiO2 and Pt/TiO2 photocatalysts. During irradiation with UV light, bidentate nitrite disappeared and bidentate nitrate, monodentate nitrate, and isocyanate, an important intermediate, were generated. Adsorbed NH2 was found to be the final product of NO reduction after UV irradiation. We concluded that NO could be effectively reduced by CH4 under light irradiation at temperatures below 100 °C. A possible reaction mechanism is proposed on the basis of the intermediates and products generated by the photocatalyst under UV light irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1

Similar content being viewed by others

References

  1. S.S. Goryashenko, Y.K. Park, D.S. Kim, S.E. Park, Res. Chem. Intermed. 24, 933 (1998)

    Article  CAS  Google Scholar 

  2. J.-H. Niu, A.-M. Zhu, C. Shi, H.-Y. Fan, X.-M. Chen, X.-F. Yang, Res. Chem. Intermed. 33, 549 (2007)

    Article  CAS  Google Scholar 

  3. B.J. Lee, M.C. Kuo, S.H. Chien, Res. Chem. Intermed. 29, 817 (2003)

    Article  CAS  Google Scholar 

  4. G. Ghiotti, F. Prinetto, Res. Chem. Intermed. 25, 131 (1999)

    Article  CAS  Google Scholar 

  5. J. Muñiz, G. Marbán, A.B. Fuertes, Appl. Catal. B 23, 25 (1999)

    Article  Google Scholar 

  6. T.H. Lim, S.M. Jeong, S.D. Kim, J. Gyenis, J. Photochem. Photobiol., A 134, 209 (2000)

    Article  CAS  Google Scholar 

  7. J.C.S. Wu, Y.-T. Cheng, J. Catal. 237, 393 (2006)

    Article  CAS  Google Scholar 

  8. J. Lasek, Y.H. Yu, J.C.S. Wu, J. Photochem. Photobiol., C 14, 29 (2013)

    Article  CAS  Google Scholar 

  9. S. Yamazoe, Y. Masutani, T. Shishido, T. Tanaka, Res. Chem. Intermed. 34, 487 (2008)

    Article  CAS  Google Scholar 

  10. H. Kominami, K. Sumida, K. Yamamoto, N. Kondo, K. Hashimoto, Y. Kera, Res. Chem. Intermed. 34, 587 (2008)

    Article  CAS  Google Scholar 

  11. M. Anpo, M. Matsuoka, H. Mishima, H. Yamashita, Res. Chem. Intermed. 23, 197 (1997)

    Article  CAS  Google Scholar 

  12. Y.-H. Yu, Y.-T. Pan, Y.-T. Wu, J. Lasek, J.C.S. Wu, Catal. Today 174, 141 (2011)

    Article  CAS  Google Scholar 

  13. M. Matsuoka, S. Higashimoto, H. Yamashita, M. Anpo, Res. Chem. Intermed. 26, 85 (2000)

    Article  CAS  Google Scholar 

  14. Y.H. Yu, I.H. Su, J.C.S. Wu, Environ. Technol. 31, 1449 (2010)

    Article  Google Scholar 

  15. C. Zhang, H. He, K.I. Tanaka, Appl. Catal. B 65, 37 (2006)

    Article  CAS  Google Scholar 

  16. V.-H. Nguyen, J.C.S. Wu, H. Bai, Catal. Commun. 33, 57 (2013)

    Article  CAS  Google Scholar 

  17. Z. Li, G. Xu, G.B. Hoflund, Fuel Process. Technol. 84, 1 (2003)

    Article  CAS  Google Scholar 

  18. M.M. Kantcheva, V.Ph. Busheva, K.I. Hadjiivanov, J. Chem. Soc., Faraday Trans. 88, 3087 (1992)

    Article  Google Scholar 

  19. D.V. Pozdnyakov, V.N. Fillmonov, Kinet. Catal. 14, 655 (1973)

    Google Scholar 

  20. B. Wichterlova, P. Sazama, J.P. Breen, R. Burch, C.J. Hill, L. Capek, Z. Sobalik, J. Catal. 235, 195 (2005)

    Article  CAS  Google Scholar 

  21. P. Sazama, L. Capek, H. Drobna, Z. Sobalik, J. Dedecek, K. Arve, B. Wichterlova, J. Catal. 232, 302 (2005)

    Article  CAS  Google Scholar 

  22. G. Qi, R.T. Yang, J. Phys. Chem. B 108, 15738 (2004)

    Article  CAS  Google Scholar 

  23. K. Teramura, T. Tanaka, T. Funabiki, Langmuir 19, 1209 (2003)

    Article  CAS  Google Scholar 

  24. K. Hadjiivanov, V. Bushev, M. Kantcheva, D. Klissurski, Langmuir 10, 464 (1994)

    Article  CAS  Google Scholar 

  25. G. Busca, A.S. Elmi, P. Forzatti, J. Phys. Chem. 91, 5263 (1987)

    Article  CAS  Google Scholar 

  26. T. Maunula, J. Ahola, H. Hamada, Appl. Catal. B 64, 13 (2006)

    Article  CAS  Google Scholar 

  27. H. Ingelsten, M. Skoglundh, Catal. Lett. 106, 15 (2006)

    Article  CAS  Google Scholar 

  28. N. Ulagappan, H. Frei, J. Phys. Chem. A 104, 7834 (2000)

    Article  CAS  Google Scholar 

  29. M. Haneda, N. Bion, M. Daturi, J. Saussey, J.-C. Lavalley, D. Duprez, H. Hamada, J. Catal. 206, 114 (2002)

    Article  CAS  Google Scholar 

  30. L.F. Liao, C.F. Lien, D.L. Shieh, M.T. Chen, J.L. Lin, J. Phys. Chem. B 106, 11240 (2002)

    Article  CAS  Google Scholar 

  31. M. Kantcheva, J. Catal. 204, 479 (2001)

    Article  CAS  Google Scholar 

  32. J.L. Valverde, A. De Lucas, F. Dorado, A. Romero, P.B. Garcia, J. Mol. Catal. A: Chem. 230, 23 (2005)

    Article  CAS  Google Scholar 

  33. E.E. Miro, G. Imoberdorf, J. Vassallo, J.O. Petunchi, Appl. Catal. B 22, 305 (1999)

    Article  CAS  Google Scholar 

  34. J.R.S. Brownson, M.I. Tejedor–Tejedor, M.A. Anderson, Chem. Mater. 17, 6304 (2005)

    Article  CAS  Google Scholar 

  35. R. Burch, P.J. Millington, Catal. Today 26, 185 (1995)

    Article  CAS  Google Scholar 

  36. K. Hadjiivanov, H. Knozinger, Phys. Chem. Chem. Phys. 2, 2803 (2000)

    Article  CAS  Google Scholar 

  37. T. Nobukawa, M. Yoshida, S. Kameoka, S. Ito, K. Tomishige, K. Kunimori, J. Phys. Chem. B 108, 4071 (2004)

    Article  CAS  Google Scholar 

  38. S. Kameoka, Y. Ukisu, T. Miyadera, Phys. Chem. Chem. Phys. 2, 367 (2000)

    Article  CAS  Google Scholar 

  39. Y. Chi, S.S.C. Chuang, J. Catal. 190, 75 (2000)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support by the Ministry of Economic Affairs and the National Science Council, Taiwan, under grants 96-EC-17-A-09-S1-019 and NSC-95-EPA-Z-002-006, respectively, are gratefully acknowledged. The authors thank the Nano Research Center of National Taiwan University for providing the IR instrument.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey C. S. Wu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 7354 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, YT., Yu, YH., Nguyen, VH. et al. In-situ FTIR spectroscopic study of the mechanism of photocatalytic reduction of NO with methane over Pt/TiO2 photocatalysts. Res Chem Intermed 41, 2153–2164 (2015). https://doi.org/10.1007/s11164-013-1337-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-013-1337-3

Keywords

Navigation