Skip to main content
Log in

Efficient amide formation from arylamines and esters promoted by AlCl3/Et3N: an experimental and computational investigation

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Efficient and selective preparation of amides from arylamines and esters has been achieved with an AlCl3/Et3N pair under mild conditions. A large number of arylamines were successfully acylated to the corresponding amides in high yields and short reaction times. For instance, a 94% yield of p-bromoacetanilide was obtained from p-bromoaniline and ethyl acetate in 10 min at room temperature. In addition, a computational study on the N-acylation of amines was performed using density functional theory. It was found that the energy barrier for N-acylation of aniline is 10 kcal/mol higher than that of methylamine. In the presence of AlCl3, the activation energy for the N-acylation of aniline was reduced by 27.7 kcal/mol with the endothermic process becoming exothermic.

Graphical Abstract

In this work, the efficient and selective preparation of amides from arylamines and esters has been performed successfully with an AlCl3/Et3N pair under mild conditions. A large number of arylamines were acylated to the corresponding amides with high yields and short reaction times. In addition, a computational study on the N-acylation of amines has been carried out using the density functional theory (DFT) method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. T.W. Greene, P.G.M. Wuts, Protective Groups in Organic Synthesis, 2nd edn. (Wiley, New York, 1999)

    Book  Google Scholar 

  2. R.C. Larock, Comprehensive Organic Transformations (Wiley, New York, 1999)

    Google Scholar 

  3. B.V. Schmeling, M. Kulka, Science 152, 659 (1966)

    Article  CAS  Google Scholar 

  4. F. Cutillo, B. DÁbrosca, M. DellaGreca, C.D. Marino, A. Golino, L. Previtera, A. Zarrelli, Phytochemistry 64, 1381 (2003)

    Article  CAS  Google Scholar 

  5. M. Tohnishi, H. Nakao, T. Furuya, A. Seo, H. Kodama, K. Tsubata, S. Fujioka, H. Kodama, T. Hirooka, T. Nishimatsu, Flubendiamide. J. Pestic. Sci. 30, 354 (2005)

    Article  CAS  Google Scholar 

  6. T. Tsuda, H. Yasui, H. Ueda, Nippon Noyaku Gakkaishi 14, 241 (1989)

    CAS  Google Scholar 

  7. D.J.C. Constable, P.J. Dunne, J.D. Haysler, G.R. Humphrey, J.L. Leazer Jr, R.J. Linderman, K. Lorenz, J. Mansley, B.A. Pearlman, A. Wells, A. Zaks, T.Y. Zhang, Green Chem. 9, 411 (2007)

    Article  CAS  Google Scholar 

  8. P.J. Dunn, S. Galvin, K. Hettenbach, Green Chem. 6, 43 (2004)

    Article  CAS  Google Scholar 

  9. R. Vaidyanathan, V.G. Kalthod, D.P. Ngo, J.M. Manley, S.P. Lapekas, J. Org. Chem. 69, 2565 (2004)

    Article  CAS  Google Scholar 

  10. M.P. Richard, K.P. Robert, J.C. Hugh, J. Am. Chem. Soc. 81, 3984 (1959)

    Article  Google Scholar 

  11. Y.B. Lee, M.H. Park, J.E. Folk, J. Med. Chem. 38, 3053 (1995)

    Article  CAS  Google Scholar 

  12. J. Mc Nulty, V. Krishnamoorthy, A. Robertson, Tetrahedron Lett. 49, 6344 (2008)

    Article  CAS  Google Scholar 

  13. S. Naik, G. Bhattacharjya, B. Talukdar, B.K. Patel, Eur. J. Org. Chem. 1254 (2004)

  14. C.A.G.N. Montalbetti, V. Falque, Amide bond formation and peptide coupling. Tetrahedron 61, 10827 (2005)

    Article  CAS  Google Scholar 

  15. K. Arnold, A.S. Batsanov, B. Davies, A. Whiting, Green Chem. 10, 124 (2008)

    Article  CAS  Google Scholar 

  16. N. Narender, P. Srinivasu, S.J. Kulkarni, K.V. Raghavan, Green Chem. 2, 104 (2000)

    Article  CAS  Google Scholar 

  17. B.M. Choudary, V. Bhaskar, M.K. Lakshmi, R.K. Koteswara, K.V. Raghavan, Catal. Lett. 74, 207 (2001)

    Article  CAS  Google Scholar 

  18. S.M. Coman, M. Florea, V.I. Parvulescu, V. David, A. Medvedovici, D. De Vos, P.A. Jacobs, G. Poncelet, P. Grange, J. Catal. 249, 359 (2007)

    Article  CAS  Google Scholar 

  19. J.M. Williams, R.B. Jobson, N. Yasuda, G.A. Marchesini, Tetrahedron Lett. 36, 5461 (1995)

    CAS  Google Scholar 

  20. O. Takashi, E. Tayama, M. Yamada, K. Maruoka, Synlett 6, 729 (1999)

    Google Scholar 

  21. J. Wang, M. Rosingana, R.P. Discordi, N. Soundararajan, R. Polniaszek, Synlett 9, 1485 (2001)

    Article  Google Scholar 

  22. A. Basha, M. Lipton, S.M. Weinreb, Tetrahedron Lett. 18, 4171 (1977)

    Article  Google Scholar 

  23. J.I. Levin, E. Turos, S.M. Weinreb, Synth. Commun. 12, 989 (1982)

    Article  CAS  Google Scholar 

  24. R.E. Dole, K.C. Nicolau, J. Am. Chem. Soc. 107, 1695 (1985)

    Article  Google Scholar 

  25. D.J. Hart, W.P. Hong, L.Y. Hsu, J. Org. Chem. 52, 4665 (1987)

    Article  CAS  Google Scholar 

  26. T.B. Sim, N.M. Yoon, Synlett 10, 827 (1994)

    Article  Google Scholar 

  27. A. Novak, L.D. Humphreys, M.D. Walker, S. Woodward, Tetrahedron Lett. 47, 5767 (2006)

    Article  CAS  Google Scholar 

  28. T. Gustafsson, F. Ponten, P. H. Seeberger, Chem. Commun. 1100 (2008)

  29. P.J. Jenks, Catalysis in Chemistry and Enzymology (McGraw-Hill, New York, 1969)

    Google Scholar 

  30. F.N. Menger, J.H. Smith, J. Am. Chem. Soc. 94, 3824 (1972)

    Article  CAS  Google Scholar 

  31. H. Zipse, L. Wang, K. N. Houk, Liebigs Ann. 1511 (1996)

  32. W. Yang, D.G. Drueckhammer, Org. Lett. 2, 4133 (2000)

    Article  CAS  Google Scholar 

  33. S. Ilieva, B. Galabov, D.G. Musaev, K. Morokuma, H.F. Schaefer, J. Org. Chem. 68, 1496 (2003)

    Article  CAS  Google Scholar 

  34. D. Davidson, P. Newman, J. Am. Chem. Soc. 74, 1515 (1952)

    Article  CAS  Google Scholar 

  35. B.S. Jursic, Z. Zdravkovski, Synth. Commun. 23, 2761 (1993)

    Article  CAS  Google Scholar 

  36. J.C. Sheehan, G.P. Hess, J. Am. Chem. Soc. 77, 1067 (1955)

    Article  CAS  Google Scholar 

  37. R.M. Lawrence, S.A. Biller, O.M. Fryszman, M.A. Poss, Synthesis 553 (1997)

Download references

Acknowledgement

This work was financially supported by the National Natural Science Foundation of China (Project No 20834002 and No 21003093).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenqin Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11164_2012_517_MOESM1_ESM.doc

The computational details, the energy profile for N-acetylation of methylamine, and the energy profile for the N-acetylation of aniline with AlCl3 are contained in the supporting information. (DOC 148 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tong, X., Ren, Z., Qü, X. et al. Efficient amide formation from arylamines and esters promoted by AlCl3/Et3N: an experimental and computational investigation. Res Chem Intermed 38, 1961–1968 (2012). https://doi.org/10.1007/s11164-012-0517-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-012-0517-x

Keywords

Navigation