Skip to main content

Advertisement

Log in

A new green technology: hydrothermal electrolysis for the treatment of biodiesel wastewater

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Recently, biodiesel has become more attractive as an alternative diesel fuel because it is renewable, biodegradable, non-toxic, and environmentally friendly. In this study, we have developed a new green process called “hydrothermal electrolysis”, by which industrial wastewater can be converted to more value-added chemicals under high-temperature and high-pressure aqueous conditions. We prepared model biodiesel wastewater and carried out hydrothermal electrolysis experiments by using both a continuous flow reactor and a batch autoclave. Current efficiencies and the effects of reaction time and reaction temperature on the decomposition of biodiesel wastewater and removal of total organic carbon (TOC) were investigated under various operating conditions. It was found that conversions of both TOC and glycerol inside the model biodiesel wastewater increased with increasing applied current. With the autoclave, the maximum glycerol conversion was recorded as 83% by applying 1 A current at 250 °C, whereas with the flow reactor, 75% of glycerol was converted into gas and liquid products under the effect of 1 A current for 60 min at a reaction temperature of 280 °C. In the case of TOC removal from the liquid product solution, under identical conditions, it was found that 23 and 15.9% TOC conversions were achieved by the batch and continuous flow reactors, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. H. Fukuda, A. Kondo, H. Noda, J. Biosci. Bioeng. 92, 405 (2001)

    Article  CAS  Google Scholar 

  2. T. Murayama, Inform 5, 1138 (1994)

    Google Scholar 

  3. D.L. Klass, Biomass for Renewable Energy, Fuels and Chemicals (Academic, San Diego, 1998)

    Google Scholar 

  4. G. Vicente, M. Martinez, J. Aracil, Bioresour. Technol. 92, 297 (2004)

    Article  CAS  Google Scholar 

  5. I. Takeshi, N. Yutaka, S. Koichiro, M. Tomoaki, N. Naomichi, J. Biosci. Bioeng. 100, 260 (2005)

    Article  Google Scholar 

  6. A.M. Douette, S.Q. Turn, W. Wang, V.I. Keffer, Energy Fuels 21, 3499 (2007)

    Article  CAS  Google Scholar 

  7. G.W. Huber, J.W. Shabaker, J.A. Dumesic, Science 300, 2075 (2003)

    Article  CAS  Google Scholar 

  8. R.D. Cortright, R.R. Davda, J.A. Dumesic, Nature 418, 964 (2002)

    Article  CAS  Google Scholar 

  9. G.A. Deluga, J.R. Salge, L.D. Schmidt, X.E. Verykios, Science 303, 993 (2004)

    Article  CAS  Google Scholar 

  10. D.G. Lahr, B.H. Shanks, Ind. Eng. Chem. Res. 42, 5467 (2003)

    Article  CAS  Google Scholar 

  11. J. Chamin, L. Djakovitch, P. Gallezot, P. Marion, C. Pinel, C. Rosier, Green Chem. 6, 359 (2004)

    Article  Google Scholar 

  12. S. Wang, H. Liu, Catal. Lett. 117, 62 (2007)

    Article  CAS  Google Scholar 

  13. A. Alhanash, E.F. Kozhevnikova, I.V. Kozhevnikov, Catal. Lett. 120, 307 (2008)

    Article  CAS  Google Scholar 

  14. Y. Calzavara, C.J. Dubien, G. Boissonnet, S. Sarrade, Conserv. Manag. 46, 615 (2005)

    Article  CAS  Google Scholar 

  15. T. Valliyappan, N.N. Bakhsi, A.K. Dalai, Bioresour. Technol. 99, 4476 (2008)

    Article  CAS  Google Scholar 

  16. N. Luo, X. Fu, F. Cao, T. Xiao, P.P. Edwards, Fuel 87, 3483 (2008)

    Article  CAS  Google Scholar 

  17. Y. Fernandez, A. Arenillas, M.A. Diez, J.J. Pis, J.A. Menendez, J. Anal. Appl. Pyrolysis 84, 145 (2009)

    Article  CAS  Google Scholar 

  18. A. Yuksel, H. Koga, M. Sasaki, M. Goto, J. Renew. Sustain. Energy 1. (2009). doi:10.1063/1.3156006

  19. A. Yuksel, H. Koga, M. Sasaki, M. Goto, Ind. Eng. Chem. Res. 49, 1520 (2010)

    Article  CAS  Google Scholar 

  20. T. Rogalinski, K. Liu, T. Albrecht, G. Brunner, J. Supercrit. Fluids 46, 335 (2008)

    Article  CAS  Google Scholar 

  21. D.J. Miller, S.B. Hawthorne, Anal. Chem. 70, 1618 (1998)

    Article  CAS  Google Scholar 

  22. T. Clifford, Fundamentals of Supercritical Fluids (Oxford University Press, New York, 1998)

    Google Scholar 

  23. P.E. Savage, Chem. Rev. 99, 603 (1999)

    Article  CAS  Google Scholar 

  24. F.S. Asghari, H. Yoshida, J. Phys. Chem. A. 112, 7402 (2008)

    Article  CAS  Google Scholar 

  25. M. Sasaki, Wahyudiono, A. Yuksel, M. Goto, Fuel Process. Technol. (2010). doi:10.1016/j.fuproc.2010.03.026

  26. M. Sasaki, K. Yamamoto, M. Goto, J. Mater. Cycles Waste Manag. 9, 40 (2007)

    Article  CAS  Google Scholar 

  27. S. Demirel, K. Lehnert, M. Lucas, P. Claus, J. Appl. Catal. B Environ. 70, 637 (2007)

    Article  CAS  Google Scholar 

  28. S. Carettin, P. McMorn, P. Johnston, K. Griffin, G.J. Hutchings, Chem. Commun. 696 (2002)

  29. S. Carettin, P. McMorn, P. Johnston, K. Griffin, C.J. Kiely, G.J. Hutchings, Phys. Chem. Chem. Phys. 5, 1329 (2003)

    Article  Google Scholar 

  30. H. Kishida, F. Jin, X. Yan, T. Moriya, H. Enomoto, Carbohydr. Res. 341, 2619 (2006)

    Article  CAS  Google Scholar 

  31. G. Prentice, Electrochemical Engineering Principles, 1st edn. (Prentice Hall, NJ, 1991)

    Google Scholar 

  32. L. Antropov, Theoretical Electrochemistry, 1st edn. (Mir, Moscow, 1977)

    Google Scholar 

  33. J. Gao, X. Wang, Z. Hu, H. Deng, J. Hou, X. Lu, J. Kang, Water Res. 37, 267 (2003)

    Article  CAS  Google Scholar 

  34. A.G. Vlyssides, M. Loizidou, P.K. Karlis, A.A. Zorpas, D. Papaioannou, J. Hazard. Mater. B 70, 41 (1999)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors like to thank the Kumamoto University Global Centre of Excellence (COE) Program “Global Initiative Centre for Pulsed Power Engineering” for their financial support of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Motonobu Goto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuksel, A., Sasaki, M. & Goto, M. A new green technology: hydrothermal electrolysis for the treatment of biodiesel wastewater. Res Chem Intermed 37, 131–143 (2011). https://doi.org/10.1007/s11164-011-0260-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-011-0260-8

Keywords

Navigation