Skip to main content
Log in

RETRACTED ARTICLE: Advancements in morphometric differentiation: a review on stock identification among fish populations

  • Reviews
  • Published:
Reviews in Fish Biology and Fisheries Aims and scope Submit manuscript

This article was retracted on 24 August 2013

Abstract

Identifying intraspecific units or stocks of a species with unique morphological characteristics has now become more powerful and enables a better management of these subunits of species and ensures better management and conservation of the fishery resources. These morphometric characteristics typically show ontogenic changes in body shape particularly rapid at key life history stages. For about the past 50 years, traditional multivariate morphometrics, accounting for variation in size and shape, have successfully discriminated many fish stocks throughout the world, however, they have always been criticized because of several biases and weaknesses. To contribute to the advancement of fish stock identification, a new technology based on “Truss Network System” has emerged as a new tool with more effective strategies for descriptions of shape, better data collection and diversified analytical tools. In the present communication, recent developments made in the discipline of morphometric differentiation in body shape among fish populations are briefly reviewed and it appears that the truss based techniques has now been proved to be more effective than manual distance measurement for the management of fishery resources throughout the world. However in India, these techniques have not been commonly applied in fisheries research to discriminate fish stocks. The study expands the potential through various advancements in morphometric differentiation analysis which could serve as a tool for stock identification among fish populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ali MY, Lindsey CC (1974) Heritable and temperate-induced meristic variation in the medaka, Oryzias latipes. Can J Zool 52:959–976

    Article  CAS  PubMed  Google Scholar 

  • Bagherian A, Rahmani H (2009) Morphological discrimination between two populations of shemaya, Chalcalburnus chalcoides (Actinopterygii, Cyprinidae) using a truss network. Anim Biodivers Conserv 32(1):1–8

    Google Scholar 

  • Beacham TD (1990) A genetic analysis of meristic and morphometric variation in chum salmon (Oncorhynchus keta) at three different temperatures. Can J Zool 68:225–229

    Article  Google Scholar 

  • Begg G, Friedland KD, Pearce JB (1999) Stock identification-its role in stock assessment and fisheries management. Fish Res 43:1–8

    Article  Google Scholar 

  • Bektas Y, Belduz AO (2009) Morphological variation among Atlantic horse mackerel, Trachurus trachurus populations from Turkish coastal waters. J Anim Vet Adv 8(3):511–517

    Google Scholar 

  • Bertrand M, Marcogliese DJ, Magnan P (2008) Trophic polymorphism in brook charr revealed by diet, parasites and morphometrics. J Fish Biol 72:555–572

    Article  Google Scholar 

  • Blackith RE, Reyment RA (1971) Multivariate morphometrics. Academic Press, London

    Google Scholar 

  • Blackstone NW (1987) Allometry and relative pattern and process in evolutionary studies. Syst Zool 36(1):76–78

    Article  Google Scholar 

  • Booke HE (1981) The conundrum of the stock concept-are nature and nature definable in fishery science? Can J Fish Aquat Sci 38:1479–1480

    Article  Google Scholar 

  • Bookstein FL (1982) Foundation of morphometrics. Annu Rev Ecol Evol Syst 13:451–470

    Article  Google Scholar 

  • Bookstein FL (1990) Introduction to methods for landmark data. In: Rohlf FJ, Bookstein FL (eds) Proceedings of the Michigan morphometrics workshop. University of Michigan Museum of Zoology Special Publication, vol 2, pp 215–226

  • Bookstein FL, Chernoff B, Elder RL, Humphries JM, Smith GR, Strauss RE (1985) Morphometrics in evolutionary biology, the geometry of size and shape change with examples of fishes. Acad Natl Sci Philadelphia Spec Pub 15:277

    Google Scholar 

  • Bronmark C, Miner JG (1992) Predator-induced phenotypical change in body morphology in crucian carp. Science 258:1348–1350

    Article  CAS  PubMed  Google Scholar 

  • Burnaby TP (1966) Growth-invariant discriminant functions and generalized distances. Biometrics 22:96–110

    Article  Google Scholar 

  • Cadrin SX (2000) Advances in morphometric identification of fishery stocks. Rev Fish Biol 10:91–112

    Article  Google Scholar 

  • Cadrin SX (2005) Morphometric landmarks. In: Cadrin SX, Friedland KD, Waldman JR (eds) Stock identification methods. Elsevier Academic Press, UK, pp 153–172

    Chapter  Google Scholar 

  • Cadrin SX, Friedland KV (1999) The utility of image processing techniques for morphometric analysis and stock identification. Fish Res 43:129–139

    Article  Google Scholar 

  • Cadrin SX, Silva VM (2005) Morphometric variation of yellowtail flounder. ICES J Mar Sci 62:683–694 [NB]

    Article  Google Scholar 

  • Cadrin SX, Friedland KD, Waldman JR (2005) Stock identification methods—an overview. In: Cadrin SX, Friedland KD, Waldman JR (eds) Stock identification methods. Elsevier Academic Press, UK, pp 3–6

    Google Scholar 

  • Çakmak E, Alp A (2010) Morphological differences among the mesopotamian spiny eel, Mastacembelus mastacembelus (Banks & Solander 1794), populations. Turk J Fish Aquat Sci 10:87–92

    Article  Google Scholar 

  • Cambell NA (1976) A multivarate approach to variation in microfilariae: examination of the species Wuchereria lewisi and demes of the species W. bancrofti. Aust. J. Zool. 24:105–114

    Article  Google Scholar 

  • Carvalho GR (1993) Evolutionary aspects of fish distribution: genetic variability and adaptation. J Fish Biol 43(suppl A):53–73

    Article  Google Scholar 

  • Cavalcanti MJ, Monteiro LR, Lopez PRD (1999) Landmark based morphometric analysis in selected species of Serranid fishes (Perciformes: Teleostei). Zool Stud 38(3):287–294

    Google Scholar 

  • Chamarthi S, Ram PS, Josyula L (2008) Effectofriver discharge on Bay of Bengal circulation. Mar Geodesy 31(3):160–168

    Article  Google Scholar 

  • Chen WY, Su WC, Shao KT, Lin CP (1989) Morphometric Studies of the Grey Mullet (Mugil cephalus) from the waters around Taiwan. J Fish Soc Taiwan 16(3):153–163

    Google Scholar 

  • Conover DO (1998) Local adaptation in marine fishes: evidence and implications for stock enhancement. Bull Mar Sci 62:477–493

    Google Scholar 

  • Corruccini RS (1983) Principal components for allometric analysis. Am J Phys Anthropol 60:451–453

    Article  CAS  PubMed  Google Scholar 

  • Corti M, Thorpe RS, Sola L, Sbordoni V, Cataudella S (1988) Multivariate morphometrics in aquaculture: a case study of six stocks of the common carp (Cyprinus carpio) from Italy. Can J Fish Aquat Sci 45:1548–1554

    Article  Google Scholar 

  • Creech S (1992) A multivariate morphometric investigation of Atherina boyeri Risso, 1810 and A. presbyter Cuvier, 1829 (Teleostei: Atherinidae): morphometric evidence in support of the two species. J Fish Biol 41:341–353

    Article  Google Scholar 

  • Currens KP, Sharpe CS, Hjort R, Schreck CB, Li HW (1989) Effects of different feeding regimes on the morphometrics of Chinook salmon (Oncorhynchus nerka). Evolution 48:1723–1734

    Google Scholar 

  • Day T, McPhail JD (1996) The effect of behavioral and morphological plasticity on foraging efficiency in the threespine stickleback (Gasterosteus sp.). Oecologia 108:380–388

    Google Scholar 

  • Day T, Pritchard J, Schluter D (1994) A comparison of two sticklebacks. Evolution 48:1723–1734

    Article  Google Scholar 

  • Falconer DS (1981) Introduction to quantitative genetics, 2nd edn. Longman, London

    Google Scholar 

  • Ferguson A, Taggart JB, Prodohl PA, McMeel O, Thompson C, Stone C, McGinnity P, Hynes RA (1995) The application of molecular markers to the study and conservation of fish populations, with special reference to Salmo. J Fish Biol 47:103–126

    Article  CAS  Google Scholar 

  • Fernandez I, Devraj M (1989–1990) Identity of the stocks of the gold spotted grenadier anchovy (Coilia dussumieri) and the Bombay duck (Harpondon nehereus) along the Northwest coast of India. Matsya 15–16:1–13

  • Gopikrishna G, Sarada C, Sathianandan TV (2006) Truss morphometry in the Asian seabass—Lates calcarifer. J Marine Biol Assoc India 48(2):220–223

    Google Scholar 

  • Gould SJ (1966) Allometry and size in ontogeny and phylogeny. Biol Rev 41:537–640

    Article  Google Scholar 

  • Grimes CB, Johnson AG, Fable WA Jr (1987) Delineation of king mackerel (Scomberomorus cavalla) stocks along the US east coast and in the Gulf of Mexico. In: Kumpf HE, Vaught RN, Grimes CB, Johnson AG, Nakamura EL (eds) Proceedings of the stock identification workshop. NOAA technical memorandum NMFS-SEFC, vol 199, pp 186–187

  • Grudzien TA, Turner BJ (1984) Direct evidence that the Ilyodon morphs are a single biological species. Evolution 38:402–407

    Article  Google Scholar 

  • Haas TC, Blum MJ, Heins DC (2010) Morphological responses of a stream fish to water impoundment. Biol Lett 6(6):803–806

    Article  PubMed  Google Scholar 

  • Haddon M, Willis TJ (1995) Morphometric and meristic comparison of orange roughy (Hoplostethus atlanticus: Trachichithyidae) from the Puysegur Bank and Lord Howe Rise, New Zealand, and its implications for stock structure. Mar Biol 123:19–27

    Article  Google Scholar 

  • Hammer O, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4(1):9

    Google Scholar 

  • Hard JJ (1995) A quantitative genetic perspective on the conservation of intraspecific diversity. Am Fish Soc Symp 17:304–326

    Google Scholar 

  • Hatcher L (2003) A step by step approach to using SAS for factor analysis and structural equational modeling. SAS Institute Inc., Cary, pp 57–125

    Google Scholar 

  • Hatfield T (1997) Genetic divergence in adaptive characters between sympatric species of sticklebacks. Am Nat 149:1009–1029

    Article  CAS  PubMed  Google Scholar 

  • Hedgecock D, Hutchinson ES, Li G, Sly FL, Nelson K (1989) Genetic and morphometric variation in the Pacific sardine, Sardinops sagax caerulea: comparisons and contrasts with historical data and with variability in the northern anchovy, Engraulis mordax. Fish Bull 87(3):653–671

    Google Scholar 

  • Hossain MAR, Nahiduzzaman M, Habiba Khanam DS, Mst U, Alam MS (2010) Landmark-Based Morphometric and Meristic Variations of the Endangered Carp, Kalibaus Labeo calbasu, from Stocks of Two Isolated Rivers, the Jamuna and Halda, and a Hatchery. Zoological Studies 49(4):556–563

    Google Scholar 

  • Hubbs CL, Lagler KF (1947) Fishes of the Great Lake region. Cranbrook Inst of Sci Bull 26, pp 186

  • Humphries JM, Bookstein FL, Chernoff B, Smith GR, Elder RL, Poss SG (1981) Multivariate discrimination by shape in relation to size. Ibid 30:291–308

    Google Scholar 

  • Huxley JS (1932) Problems of relative growth. Dial Press, New York, 276 pp

    Google Scholar 

  • Ibáñez-Aguirre AL, Cabral-Solís E, Gallardo-Cabello M, Espino-Barr E (2006) Comparative morphometrics of two populations of Mugil curema (Pisces: Mugilidae) on the Atlantic and Mexican Pacific coasts. Sci Mar 70(1):139–145

    Article  Google Scholar 

  • Ihssen PE, Booke HE, Casselman JM, McGlade JM, Payne NR, Utter FM (1981) Stock identification: materials and methods. Can J Fish Aquat Sci 38:1838–1855

    Article  Google Scholar 

  • Imre I, McLaughlin RL, Noakes DLG (2002) Phenotypic plasticity in brook charr: changes in caudal fin induced by water flow. J Fish Biol 61:1171–1181

    Article  Google Scholar 

  • Janhunen M, Peuhkuri N, Piironen J (2009) Morphological variability among three geographically distinct Arctic charr (Salvelinus alpinus L.) populations reared in a common hatchery environment. Ecol Freshw Fish 18:106–116

    Article  Google Scholar 

  • Jayasankar P, Thomas PC, Paulton MP, Mathew J (2004) Morphometric and Genetic Analyzes of Indian Mackerel (Rastrelliger kanagurta) from Peninsular India. Asian Fisheries Science 17:201–215

    Google Scholar 

  • Jerry DR, Cairns SC (1998) Morphological variation in the catadromous Australian bass, from seven geographical distinct drainages. J Fish Biol 52:829–843

    Article  Google Scholar 

  • Jolicoeur PJ (1963) The multivariate generalization of the allometric equation. Biometrics 19:497–499

    Article  Google Scholar 

  • Junquera S, Perez-Gandaras G (1993) Population diversity in Bay of Biscay anchovy, Engranlis capensis. Gilchrist. Fish Biol. 27:23–29

    Google Scholar 

  • Kinsey ST, Orsoy T, Bert TM, Mahmoudi B (1994) Population structure of the Spanish sardine Sardinella aurita: natural morphological variation in a genetically homogeneous population. Mar Biol 118:309–317

    Article  Google Scholar 

  • Klingenberg CP (1996) Multivariate allometry. In Advances in Morphometrics (Marcus, L. F., Corti, M., Loy, A., Naylor, G. J. P. & Slice, D. E. eds.). NATO ASI Series A: Life Sci. 284:23–49

    Google Scholar 

  • Knudsen R, Amundsen PA, Primicerio R, Klemetsen A, Soerensen P (2007) Contrasting niche-based variation in trophic morphology within Arctic charr populations. Evol Ecol Res 9:1005–1021

    Google Scholar 

  • Kolla V, Moore DG, Curray JR (1976) Recent bottom-current activity in the deep western Bay of Bengal. Mar Geol 21(4):255–270

    Article  Google Scholar 

  • Lakra WS, Sarkar UK (2010) NBFGR-marching ahead in cataloguing and conserving fish genetic resources of India. Fish Chimes 30(1):102–107

    Google Scholar 

  • Lanyon LE (1984) Functional strain as a determinant for bone remodeling. Calcif Tissue Int 36:556–561

    Article  Google Scholar 

  • Lanyon LE, Rubin CT (1985) Functional adaptation in skeletal structures. In: Hildebrand M, Bramble DM, Liem KF, Wake DB (eds) Functional Vertebrate Morpholgy. Belknap Press, Cambridge, pp 1–25

    Google Scholar 

  • Lavin PA, McPhail JD (1987) Morphological divergence and the organization of trophic characters among lacustrine populations of the threespine stickleback (Gasterosteus aculeatus). Can J Fish Aquat Sci 44:1820–1829

    Article  Google Scholar 

  • Lee PJ (1971) Multivariate analysis for the fisheries biology. Fish Res Bd Can Tech Rep 244:1–182

    Google Scholar 

  • Lindsey CC (1962) Experimental study of meristic variation in a population of threespine sticklebacks, Gasterosteus aculeatus. Can J Zool 40:271–312

    Article  Google Scholar 

  • Lowe SA, Van doornik DM, Winans GA (1998) Geographic variation in genetic and growth pattern of Atka mackerel, Pleurogrammus monopterygius (Hexagrammidae), in the Aleutian archipelago. Fish Bull 96:502–515

    Google Scholar 

  • Mamuris Z, Apostolidis AP, Panagiotaki P, Theodorou AJ, Triantaphyllidis C (1998) Morphological variation between red mullet populations in Greece. J Fish Biol 52:107–117

    Article  Google Scholar 

  • Marcus LF (1990) Traditional morphometrics. In: Rohlf FJ, Bookstein FL (eds) Proceedings of the Michigan morphometrics workshop. University of Michigan Museum of Zoology Special Publication, vol 2, pp 77–122

  • Martin WR (1949) The mechanics of environmental control of body form of fishes. University of Toronto Studies, Biological Series, No. 58; Publications of the Ontario Fisheries Research Laboratory, No. 78, 91 pp

  • McPhail JD (1984) Ecology and evolution of sympatric sticlebacks (Gasterosteus): morphological and genetic evidence for a species pair in Enos Lake, British Columbia. Can J Zool 62:1402–1408

    Article  Google Scholar 

  • McPhail JD (1992) Ecology and evolution of sympatric sticlebacks (Gasterosteus): evidence for a species-pair in Paxton Lake, Texada Island, British Columbia. Can J Zool 70:361–369

    Article  Google Scholar 

  • Melvin GD, Dadswell MJ, McKenzie JA (1992) Usefulness of meristic and morphometric characters in discriminating populations of American shad (Alosa sapidissima) (Osteichthyes: Clupeidae) inhabiting a marine environment. Can J Fish Aquat Sci 49:266–280

    Article  Google Scholar 

  • Meyer A (1987) Phenotypic plasticity and heterochrony in Cichlasoma managuense (Pisces, Cichlidae) and their implications for speciation in cichlid fishes. Evolution 41:1357–1369

    Article  Google Scholar 

  • Meyer A (1990) Ecological and evolutionary consequences of trophic polymorphism in Cichlasoma citrinellum (Pisces: Cichlidae). Biol J Linn Soc 39:279–299

    Article  Google Scholar 

  • Misra RK, Easton MDL (1999) A note on the number of morphometric characters used in fish stock delineation studies employing a MANOVA. Fish Res 42:191–194

    Article  Google Scholar 

  • Murta AG (2000) Morphological variation of horse mackerel (Trachurus trachurus) in the Iberian and North African Atlantic: implications for stock identification. ICES J Mar Sci 57:1240–1248

    Article  Google Scholar 

  • Nishida T (1992) Considerations of stock structure of yellowfin tuna (Thunnus albacares) in the Indian Ocean based on fishery data. Fish Oceanogr 1(2):143–152

    Article  Google Scholar 

  • Omoniyi T, Agbon AO (2007) Morphometric variations in Sarotherodon melanotheron (Pisces: Cichlidae) from brackish and fresh water habitats in South-western Nigeria. West Afr J Appl Ecol 12:101–105

    Google Scholar 

  • Pakkasmaa S (2001) Morphological differentiation among local trout (Salmo trutta) populations. Biol J Linn Soc 72:231–239

    Article  Google Scholar 

  • PAST (2001) Paleontological statistics software package for education and data analysis. In: Hammer Ø, Harper DAT, Ryan PD (eds) Palaeontologia Electronica 4(1):9

  • Peres-Neto PR, Magnan P (2004) The influence of swimming demand on phenotypic plasticity and morphological interaction: a comparison of two polymorphic charr species. Oecologia 140:36–45

    Article  PubMed  Google Scholar 

  • Pimentel RA (1979) Morphometrics, the multivariate analysis of biological data. Kendall Hunt, Dubuque

    Google Scholar 

  • Poulet N, Reyjol Y, Collier H, Lek S (2005) Does fish scale morphology allow the identification of fish population of Leuciscus burdigalensis (SW France)? Aquat Sci 61:122–127

    Article  Google Scholar 

  • Proulx R, Magnan P (2004) Contribution of phenotypic plasticity and heredity to the trophic polymorphism of lacustrine brook charr (Salvelinus fontinalis M.). Evol Ecol Res 6:503–522

    Google Scholar 

  • Quilang JP, Basiao ZU, Pagulayan RC, Roderos RR, Barrios EB (2007) Meristic and morphometric variation in the silver perch, Leiopotherapon plumbeus (Kner, 1864), from three lakes in the Philippines. J Appl Ichthyol 23:561–567

    Article  Google Scholar 

  • R Development Core Team (2006) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0. URL: http://www.R-project.org

  • Reist JD (1985) An empirical evaluation of several univariate methods that adjust for size variation in morphometric variation. Can J Zool 63:1429–1439

    Article  Google Scholar 

  • Reyment R (1990) Reification of classical multivariate analysis in morphometry. In: Rohlf FJ, Bookstein FL (eds) Proceedings of the Michigan morphometrics workshop. University of Michigan Museum of Zoology Special Publication, vol 2, pp 123–144

  • Reyment R, Blackith RE, Campbell NA (1984) Multivariate morphometrics, 2nd edn. Academic Press, London

    Google Scholar 

  • Ricker WE (1975) Computation and interpretation of biological statistics of fish populations. Bull Fish Res Board Can 191:382

    Google Scholar 

  • Riddell BE, Leggett WC, Saunders RL (1981) Evidence of adaptive polygenic variation between two populations of Atlantic salmon (Salmo salar) native to tributaries of the S. W. Miramichi River, N. B. Can J Fish Aquat Sci 38:321–333

    Article  Google Scholar 

  • Rincon PA (2000) Big fish, small fish: still the same species. Lack of morphometric evidence of the existence of two sturgeon species in Guadalquivir River. Mar Biol 136:715–723

    Article  Google Scholar 

  • Robinson BW, Parsons KJ (2002) Changing times, spaces, and faces: tests and implications of adaptive morphology plasticity in the fishes of northern postglacial lakes. Can J Fish Aquat Sci 59:1819–1833

    Article  Google Scholar 

  • Robinson BW, Wilson DS (1994) Character release and displacement in fishes: a neglected literature. Am Nat 144:596–627

    Article  Google Scholar 

  • Robinson BW, Wilson DS (1995) Experimentally induced morphological diversity in Trinidadian guppies (Poecilia reticulata). Copeia 1995:294–305

    Article  Google Scholar 

  • Rohlf FJ (2006) tpsDig2, Version 2.1. State University of New York, Stony Brook. http://life.bio.sunysb.edu/morph

  • Rohlf FJ, Bookstein FL (1987) A comment on shearing as a method for “size correction”. Syst Zool 36:356–367

    Article  Google Scholar 

  • Rohlf FL, Marcus LF (1993) A revolution in morphometrics. Trends Ecol Evol 8:129–132

    Article  Google Scholar 

  • Royce WF (1957) Statistical comparison of morphological data. In: Marr JC (eds) Contributions to the Study of subpopulations of fishes. US Fish Wildlife Serv Spec Sci Rep Fish 208:7–28

  • Ryman N, Lagercrantz U, Andersson L, Chakraborty R, Rosenberg R (1984) Lack of correspondence between genetic and morphologic variability patterns in Atlantic herring (Clupea harengus). Heredity 53:687–704

    Article  Google Scholar 

  • Sacotte S, Magnan P (2006) Inherited differences in foraging behaviour in the offspring of two forms of lacustrine brook charr. Evol Ecol Res 8:843–857

    Google Scholar 

  • Saila SB, Martin BK (1987) A brief review and guide to some multivariate methods for stock identification. In: Kumpf HE, Vaught RN, Grimes CB, Johnson AG, Nakamura EL (eds) Proceedings of the stock identification workshop. NOAA technical memorandum NMFS-SEFC, vol 199, pp 149–175

  • Saini A, Dua A, Mohindra V (2008) Comparative morphometrics of two populations of giant river catfish (Mystus seenghala) from the Indus river system. Integr Zool 3:219–226

    Article  PubMed  Google Scholar 

  • Sajina AM, Chakraborty SK, Jaiswar AK, Pazhayamadam DG, Sudheesan D (2011) Stock structure analysis of Megalaspis cordyla (Linnaeus, 1758) along the Indian coast based on truss network analysis. Fish Res 108:100–105

    Article  Google Scholar 

  • Sarkar UK, Lakra WS (2010) Life history traits of freshwater fish population and implications on aquatic biodiversity conservation: a review. Indian J Anim Sci 80(4 Suppl. 1):85–97

    Google Scholar 

  • Sarkar UK, Deepak PK, Lakra WS (2009) Stock Identification of Endangered Clown Knife Fish Chitala chitala (Hamilton-Buchanan, 1822) from Indian rivers inferred by morphological attributes. Electron J Ichthyol 2:59–75

    Google Scholar 

  • SAS Institute Inc. (1990) SAS/STAT* user’s guide, Version 6, 4th edn. SAS Institute Inc., Cary

    Google Scholar 

  • Serajuddin M (2004) Intraspecific diversity of riverine population of spiny eel, Mastacembelus armatus. Appl Fish Aquac 4(1):25–29

    Google Scholar 

  • Sheehan TF, Kocik JF, Cadrin SX, Legault C (2005) Marine growth and morphometrics for three populations of Atlantic salmon from eastern Maine, USA. Trans Am Fish Soc 134:775–788

    Article  Google Scholar 

  • Shepherd G (1999) Meristic and morphometric variation in the black sea bass north of Cape Hatteras, North Caroloina. North Am J Fish Manag 11:139–148

    Article  Google Scholar 

  • Skulason S, Noakes DLG, Snorrason SS (1989) Ontogeny of trophic morphology in four sympatric morphs of arctic charr Salvelinus alpinus in Thingvallavatn, Iceland. Biol J Linn Soc 38:281–301

    Article  Google Scholar 

  • Skulason S, Snorrason SS, Ota D, Noakes DLG (1993) Genetically based differences in foraging behaviour among sympatric morphs of arctic charr (Pisces: Salmonidae). Anim Behav 45:1179–1192

    Article  Google Scholar 

  • Skulason S, Snorrason SS, Noakes DLG, Ferguson MM (1996) Genetic basis of life history variations among sympatric morphs of arctic charr, Salvelinus alpinus. Can J Fish Aquat Sci 53:1807–1813

    Article  Google Scholar 

  • Snorrason SS, Skulason S, Jonsson B, Malmquist HJ, Jonasson PM, Sandlund OT, Lindem T (1994) Trophic specialization in arctic charr Salvelinus alpinus (Pisces: Salmonidae): morphological divergence and ontogenic niche shifts. Biol J Linn Soc 52:1–18

    Article  Google Scholar 

  • Solow A (1990) A randomization test for misclassification probability in discriminant analysis. Ecology 71:2379–2382

    Article  Google Scholar 

  • SPSS (2011) 10.0 statistical package. SPSS Inc, Chicago

    Google Scholar 

  • Strauss RE (1985) Evolutionary allometry and variation in the body form in the South American catfish genus Corydoras (Callichthydae). Syst Zool 34:381–396

    Article  Google Scholar 

  • Strauss RE, Bookstein FL (1982) The truss: body form reconstruction in morphometrics. Syst Zool 31(113–135):1982

    Google Scholar 

  • Sumantadinata K, Taniguchi N (1990) Study on morphological variation in Indonesia common Carp Stocks. Nippon Suisan Gakkaishi 56(6):879–886

    Article  Google Scholar 

  • Suneetha Gunawickrama KB (2007) Morphological heterogeneity and population differentiation in the green chromid Etroplus suratensis (Pisces: Cichlidae) in Sri Lanka. Ruhuna J Sci 2:70–81

    Google Scholar 

  • Surre C, Persat H, Gaillard JM (1986) A biometric study of three populations of the European grayling, Thymallus thymallus (L.) from the French Jura Mountains. Can J Zool 64:2430–2438

    Article  Google Scholar 

  • Swain DP, Foote CJ (1999) Stocks and chameleons: the use of phenotypic variation in stock identification. Fish Res 43:113–128

    Article  Google Scholar 

  • Swain DP, Hutchings JA, Foote CJ (2005) Environmental and genetic influences on stock identification characters. In: Cadrin SX, Friedland KD, Waldman JR (eds) Stock identification methods. Elsevier Academic Press, UK, pp 45–85

    Chapter  Google Scholar 

  • SYSTAT (2002) SYSTAT for Windows, Version 10.2. SYSTAT Software Inc., Richmond

    Google Scholar 

  • Teissier G (1960) Relative growth. In: Waterman TH (ed) The physiology of crustacea. Academic Press, New York, pp 537–560

    Google Scholar 

  • Thrope RS, Leamy L (1983) Morphometric studies in inbreed and hybrid house mice (Mus sp.): multivariate analysis of size and shape. J Zool 199:421–432

    Article  Google Scholar 

  • Todd TN, Smith GR, Cable LE (1981) Environmental and genetic contributions to morphological differentiation in ciscoes (Coregoninae) of the Great Lakes. Can J Fish Aquat Sci 38:59–67

    Article  Google Scholar 

  • Trapani J (2003) Morphological variability in the Cuatro Cienegas cichlid, Cichlasoma minckleyi. J Fish Biol 62(2):276–298

    Article  Google Scholar 

  • Turan C (1999) A note on the examination of morphometric differentiation among fish populations: the truss system. Turk J Zool 23:259–263

    Google Scholar 

  • Turan C, Ergden D, Grlek Mt, Bapusta N, Turan F (2004) Morphometric Structuring of the Anchovy (Engraulis encrasicolus L.) in the Black, Aegean and Northeastern Mediterranean Seas. Turk J Vet Anim Sci 28:865–871

    Google Scholar 

  • Turan C, Yalcin S, Turan F, Okur E, Akyurt I (2005) Morphometric comparisons of African catfish, Clarias gariepinus, populations in Turkey. Folia Zool 54(1–2):165–172

    Google Scholar 

  • Tzeng TD (2004) Morphological variation between populations of spotted mackerel (Scomber australasicus) off Taiwan. Fish Res 68:45–55

    Article  Google Scholar 

  • Wainwright PC, Osenberg CW, Mittelbach GG (1991) Trophic polymorphism in the pumpkinseed sunfish (Lepomis gibbosus Linnaeus): effect of environment on ontogeny. Funct Ecol 5:40–55

    Article  Google Scholar 

  • Walsh MG, Bain MB, Squiers T, Waldman JR, Wirgin I (2001) Morphological and genetic variation among shortnose sturgeon Acipenser brevirostrum from adjacent and distant rivers. Estuaries 24:41–48

    Article  Google Scholar 

  • Wimberger PH (1991) Plasticity of jaw and skull morphology in the neotropical cichlids Geophagus brasiliensis and G. steindachneri. Evolution 45:1545–1563

    Article  Google Scholar 

  • Wimberger PH (1992) Plasticity of fish body shape. The effects of diet, development, family and age in two species of Geophagus (Pisces, Cichlidae). Biol J Linn Soc 45:197–218

    Article  Google Scholar 

  • Winans GA (1984) Multivariate morphometry variabilityin Pacific salmon: technical demonstration. Can J Fish Aquat Sci 41:1150–1159

    Article  Google Scholar 

  • Winans GA (1987) Using morphometric and meristic characters for identifying stocks of fish. In: Kumpf HE, Vaught RN, Grimes CB, Johnson AG, Nakamura EL (eds) Proceedings of the stock identification workshop. NOAA technical memorandum NMFS-SEFC, vol 199, pp 135–146

  • Witte F, Barel CDN, Hoogerhoud RJC (1990) Phenotypic plasticity of anatomical structures and its ecomorphological significance. Neth J Zool 40:278–298

    Article  Google Scholar 

  • Zelditch ML, Book Stein FL, Lundrigan BL (1992) Ontogeny of integrated skull growth in the cotton rat Sigmodon fulviventer. Evolution 46:1164–1180

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Dwivedi.

Additional information

This article has been retracted at the request of the Publisher and Editor-in-Chief due to a violation of Springer’s Publishing Principles as part of the content of the article has been duplicated from different research papers.

The retraction note to this article can be found online at http://dx.doi.org/10.1007/s11160-013-9322-x.

About this article

Cite this article

Dwivedi, A.K., Dubey, V.K. RETRACTED ARTICLE: Advancements in morphometric differentiation: a review on stock identification among fish populations. Rev Fish Biol Fisheries 23, 23–39 (2013). https://doi.org/10.1007/s11160-012-9279-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11160-012-9279-1

Keywords

Navigation