Skip to main content

Advertisement

Log in

Phylogeography and genetic population structure of Caribbean sharpnose shark Rhizoprionodon porosus

  • Original paper
  • Published:
Reviews in Fish Biology and Fisheries Aims and scope Submit manuscript

Abstract

Sharks of the genus Rhizoprionodon are among the most important predators along the coastal marine ecosystems, and they represent an important economic resource for the small-scale fisheries. To properly manage and conserve exploited shark species, detailed analyses of their population structure are needed. To evaluate the gene flow and levels of the genetic diversity among populations of the Caribbean sharpnose shark R. porosus, we identified the nucleotide sequence based on collections (n = 321 specimens) from 10 different areas, including the Caribbean Sea and several locations along the entire Brazilian coast. The analysis of 802 nucleotides from the mitochondrial DNA control region revealed 53 distinct haplotypes. The majority of these haplotypes were restricted to their collection locales with a significant genetic structure detected among the overall populations (Φ ST  = 0.237, P < 0.0001). The data suggest a population division with two distinct management units in the western Atlantic. These management units are likely separated by the Equatorial Current. The strong population structure in R. porosus indicates that regional populations, if depleted, will not recover swiftly through immigration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aljanabi SM, Martinez I (1997) Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Res 25:4692–4693

    Article  PubMed  CAS  Google Scholar 

  • Avise JC (2000) Phylogeography: The history and formation of species. Harvard University Press, Cambridge

    Google Scholar 

  • Baum J, Myers RA, Kehler DG, Worm B, Harley SJ, Doherty PA (2003) Collapse and conservation of shark populations in the northwest Atlantic. Science 299:389–392

    Article  PubMed  CAS  Google Scholar 

  • Beheregaray LB, Sunnucks P, Briscoe DA (2002) A rapid fish radiation associated with the last sealevel changes in southern Brazil: the silverside Odontesthes perugiae complex. Proc Roy Soc Lond Ser B Biol Sci 269:65–73

    Article  Google Scholar 

  • Brunner PC, Douglas MR, Osinov A, Wilson CC, Bernatchez L (2001) Holartic phylogeography of Arctic charr (Salvelinus alpines L.) inferred from mitochondrial DNA sequences. Evol 55:573–586

    Article  CAS  Google Scholar 

  • Castillo-Géniz JL, Márques-Farias JF, Rodriguez De La Cruz MC, Cortés C, CidDel Prado A (1998) TheMexican artisanal shark fishery in the Gulf of Mexico: towards a regulated fishery. Mar Freshw Res 49:611–620

    Article  Google Scholar 

  • Castro ALF, Stewart BS, Wilson SG (2007) Population genetic structure of Earth′s largest fish, the whale shark (Rhincodon typus). Mol Ecol 16:5183–5192

    Article  PubMed  CAS  Google Scholar 

  • Chabot CL, Allen LG (2009) Global population structure of the tope (Galeorhinus galeus) inferred by mitochondrial control region sequence data. Mol Ecol 18:545–552

    Article  PubMed  CAS  Google Scholar 

  • Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate genegenealogies. Mol Ecol 9:1657–1660

    Article  PubMed  CAS  Google Scholar 

  • Cody TJ, Avent RM (1980) Assessment of botton longline fishing off the central Texas coast. Manage. Data Sertex Texas Parks Wildlife Department 32

  • Compagno LJV (1984) FAO Species Catalogue. Vol 4. Parts 1 and 2, Sharks of the world. FAO Fisheries Synopsis 125

  • Crottini A, Andreone F, Kosuch J (2007) Fossorial but widespread: the phylogeography of the common spadefoot toad (Pelobates fuscus), and the role of the Po Valley as a major source of genetic variability. Mol Ecol 16:2734–2754

    Article  PubMed  Google Scholar 

  • Duncan KM, Martin AP, Bowen BW, De Couet GH (2006) Global phylogeography of the scalloped hammerhead shark (Sphyrna lewini). Mol Ecol 15:2239–2251

    Article  PubMed  CAS  Google Scholar 

  • Excoffier L, Smouse P, Quattro J (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    PubMed  CAS  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) ARLEQUIN ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinf Online 1:47–50

    CAS  Google Scholar 

  • Fu YX (1996) Estimating the age of the common ancestor of a DNA sample using the number of segregating sites. Genetics 144:829–838

    PubMed  CAS  Google Scholar 

  • Gadig OBF (2001) Tubarões da Costa Brasileira. Tese de Doutorado, Unesp, Campus de Rio Claro, São Paulo 343

  • Gilbert CR (1967) A revision of the hammerhead sharks (Family Sphyrnidae). Proceedings of the U.S. National Museum 119:1–88

    Google Scholar 

  • Grace M, Henwood T (1997) Assessment of the distribution and abundance of coastal sharks in the U.S. Gulf of Mexico and Eastern Seaboard, 1995 and 1996. Mar Fish Rev 59(4):23–32

    Google Scholar 

  • Grant WS, Waples RS (2000) Spatial and temporal scales of genetic variability in marine and anadromous species: implications for fisheries oceanography. In: Harrison P, Parsons TR (eds) Fisheries oceanography: an integrative approach to fisheries ecology and management. Oxford, Blackwell, pp 61–93

    Google Scholar 

  • Graves JE (1998) Molecular insights into the population structure of cosmopolitan marine fishes. J Hered 89:427–437

    Article  CAS  Google Scholar 

  • Grunwald C, Stabile J, Waldman JR, Gross R, Wirgin I (2002) Population genetics of shortnose sturgeon Acipenser brevirostrum based on mitochondrial DNA control region sequences. Mol Ecol 11:1885–1898

    Article  PubMed  CAS  Google Scholar 

  • Harpending RC (1994) Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution. Hum Biol 66:591–600

    PubMed  CAS  Google Scholar 

  • Heist EJ (2004) Genetics of sharks, skates, and rays. In: Carrier JC, Musick JA, Heithaus MR (eds) Biology of sharks and their relatives. CRC Press, New York, pp 471–485

    Chapter  Google Scholar 

  • Heist EJ, Musick JA, Graves JE (1996) Genetic population structure of the shortfin mako (Isurus oxyrinchus) inferred from restriction fragment length polymorphism analysis of mitochondrial DNA. Can J Fish Aquatic Scie 53:583–588

    Article  CAS  Google Scholar 

  • Kasim HM (1991) Shark fishery of Veraval coast with special reference to population dynamics of Scoliodon laticaudus (Muller and Henle) and Rhizoprionodon acutus (Ruppell). J Mar Biol Assoc 33:213–228

    Google Scholar 

  • Keeney DB, Heist EJ (2006) Worldwide phylogeography of the blacktip shark (Carcharhinus limbatus) inferred from mitochondrial DNA reveals isolation of western Atlantic populations coupled with recent Pacific dispersal. Mol Ecol 15:3669–3679

    Article  PubMed  CAS  Google Scholar 

  • Keeney DB, Heupel MR, Hueter RE, Heist EJ (2005) Microsatellite and mitochondrial DNA analyses of the genetic structure of blacktip shark (Carcharhinus limbatus) nurseries in the north western Atlantic, Gulf of Mexico, and Caribbean Sea. Mol Ecol 14:1911–1923

    Article  PubMed  CAS  Google Scholar 

  • Lessa R, Quijano SM, Santana FM, Monzini J (2009) Rhizoprionodon porosus. In: IUCN 2009. IUCN Red List of Threatened Species 2

  • Mantel N (1967) Detection of disease clustering and a generalized regression approach. Cancer Res 27:209

    PubMed  CAS  Google Scholar 

  • Márquez-Farias JF, Castillo-Géniz LC (1998) Fishery biology and demography of the Atlantic sharpnose shark, Rhizoprionodon terraenovae, in the southern Gulf of Mexico. Fish Res 2:183–198

    Article  Google Scholar 

  • Mattos SMG, Broadhurst MK, Hazin FHV, Jonnes DM (2001) Reproductive biology of the Caribbean sharpnose shark, Rhizoprionodon porosus, from Northern Brazil. Mar Freshw Res 52:745–752

    Article  Google Scholar 

  • Mendonça FF, Oliveira C, Gadig OBF, Foresti F (2009) Populations analysis of the Brazilian Sharpnose Shark Rhizoprionodon lalandii (Chondrichthyes: Carcharhinidae) on the São Paulo coast Southern Brazil: inferences from mt DNA sequences. Neotrop Ichth 7(2):213–216

    Google Scholar 

  • Mendonça FF, Burgess G, Coelho R, Piercy A, Oliveira C, Gadig OBF, Foresti F (2011) Species delimitation in sharpnose sharks (genus Rhizoprionodon) in the western Atlantic Ocean using mitochondrial DNA. Conserv Genetics 12:193–200

    Article  Google Scholar 

  • Motta FS, Gadig OBF, Namora RC, Braga FM (2005) Size and sex compositions, length–weight relationship, and occurrence of the Brazilian sharpnose shark, Rhizoprionodon lalandii, caught by artisanal fishery from southeastern Brazil. Fish Res 74:116–126

    Article  Google Scholar 

  • Ostbye K, Bernatchez L, Næsje TF, Himberg M, Hindar K (2005) The evolutionary history of European whitefish (Coregonus lavaretus L.) as inferred from mtDNA phylogeography and Gillraker numbers. Mol Ecol 14:4371–4387

    Article  PubMed  CAS  Google Scholar 

  • Pardini AT, Jones CS, Noble LR (2001) Sex-biased dispersal of great white sharks. Nature 412:139–140

    Article  PubMed  CAS  Google Scholar 

  • Planes S, Doherty PJ, Bernardi G (2001) Strong genetic divergence among populations of a marine fish with limited dispersal, Acanthochromis polyacanthus, within the great barrier reef and the coral sea. Evol 55:2263–2273

    CAS  Google Scholar 

  • Portnoy DS, McDowell JR, Heist EJ, Musick JA, Graves JE (2010) World phylogeography and male-mediated gene flow in the sandbar shark, Carcharhinus plumbeus. Mol Ecol 19:1994–2010

    Article  PubMed  CAS  Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    Article  Google Scholar 

  • Rocha LA (2003) Patterns of distribution and processes of speciation in Brazilian reef Wshes. J Biogeog 30:1161–1171

    Article  Google Scholar 

  • Rocha LA, Robertson DR, Rocha CR (2005) Recent invasion of the tropical Atlantic by an Indo-Pacific coral reef fish. Mol Ecol 14:3921–3928

    Article  PubMed  Google Scholar 

  • Rocha LA, Craig MT, Bowen BW (2007) Phylogeography and the conservation of coral reef fishes. Cor Reefs 26:501–512

    Article  Google Scholar 

  • Sadowsky V (1967) Selachier aus dem litoral von São Paulo, Brazil. Beitr Neotrop Fauna 5:71–88

    Article  Google Scholar 

  • Santos S, Schneider H, Sampaio I (2003) Genetic differentiation of Macrodon ancylodon (Sciaenidae, Perciformes) populations in Atlantic coastal waters of South America as revealed by mtDNA analysis. Genet Mol Biol 26:151–161

    Article  CAS  Google Scholar 

  • Santos S, Farias IP, Schneider H, Sampaio I (2006) Population genetic structuring of the king weakfish, Macrodon ancylodon (Sciaenidae), in Atlantic coastal waters of South America: deep genetic divergence without morphological change. Mol Ecol 15:4361–4373

    Article  PubMed  CAS  Google Scholar 

  • Schneider S, Excoffier L (1999) Estimation of demographic parameters from the distribution of pairwise differences when the mutation rates vary among sites: application to human mitochondrial DNA. Genetics 152:1079–1089

    PubMed  CAS  Google Scholar 

  • Schrey AW, Heist EJ (2003) Microsatellite analysis of population structure of the shortfin mako (Isurus oxyrinchus). Can J Fish Aquatic Scie 60:670–675

    Article  CAS  Google Scholar 

  • Schultz JK, Feldheim KA, Gruber SH, Ashley MV, McGovern TM, Bowen BW (2008) Global phylogeography and seascape genetics of the lemon sharks (genus Negaprion). Mol Ecol 17(24):5336–5348

    Article  PubMed  CAS  Google Scholar 

  • Simpfendorfer CA, Milward NE (1993) Utilization of a tropical bay as a nursery area by sharks of the families Carcharhinidae and Sphyrnidae. Environ Biol Fish 37:337–345

    Article  Google Scholar 

  • Springer VGA (1964) A revision of the Carcharhinidae shark genera Scoliodon, Loxodon. and Rhizoprionodon. Proc US Nat Museum 115:559–632

    Google Scholar 

  • Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526

    PubMed  CAS  Google Scholar 

  • Templeton AR, Crandall KA, Sing CF (1992) A cladistic analysis of phenotype associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics 132:619–633

    PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) ClustalW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Valentin JL, André DL, Jacob SA (1987) Hydrobiology in the Cabo Frio (Brazil) upwelling: two dimensional structure and variability during a wind circle. Cont Shelf Res 7:77–88

    Article  Google Scholar 

  • Waples RS (1998) Evolutionarily significant units, distinct population segments, and the endangered species act: reply to Pennock and Dimmick. Conserv Biol 12:718–721

    Article  Google Scholar 

  • Waples RS, Gustafson RG, Weitkramp LA (2001) Characterizing diversity in salmon from the Pacific Northwest. J Fish Biol 59:1–41

    Google Scholar 

Download references

Acknowledgments

We thank those who provided sharpnose shark species, especially George Burgess, Andrew Piercy, Ernesto Ron, Iracilda Sampaio, Marisa Fagundes Azevedo, Hugo Bornatowski and the Projeto Cação team. This work was supported by the Brazilian agency FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo/Proc. No. 06/588972).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando F. Mendonça.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mendonça, F.F., Oliveira, C., Gadig, O.B.F. et al. Phylogeography and genetic population structure of Caribbean sharpnose shark Rhizoprionodon porosus . Rev Fish Biol Fisheries 21, 799–814 (2011). https://doi.org/10.1007/s11160-011-9210-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11160-011-9210-1

Keywords

Navigation