Skip to main content
Log in

Antifungal azoles and azole resistance in the environment: current status and future perspectives—a review

  • Review paper
  • Published:
Reviews in Environmental Science and Bio/Technology Aims and scope Submit manuscript

Abstract

Following their extensive use, azole antifungals may enter the environment through the discharge of domestic, industrial and hospital wastewaters, agricultural runoffs and as leachates in waste-disposal sites. The presence of the azole antifungals poses potential toxicity risks to non-target organisms and plays a critical role in the evolution and/or selection of azole resistant fungal strains in the environment. Toxicities such as inhibition of algal growth, endocrine disruption in fish, CYP450-effected steroidogenesis, modulating sex differentiation in frogs, and reduction of larval body mass and growth rate have been related to azole antifungals. In addition, the isolation of azole resistant fungi such as Aspergillus fumigatus in both the environment and clinic retaining similar mode of molecular drug resistance mechanism has drawn the attention of many researchers. Therefore, the investigation of the occurrence and distribution of azole antifungals as well as azole resistant environmental isolates of fungi is becoming a trendy research venue. Here we review the occurrence of antifungal azoles and azole resistance in the environment. The major points discussed are (1) an update on the environmental occurrence, distribution and ecological risks of the most commonly used azole antifungals in the environment including surface water and drinking water (2) environmental azole antifungal resistance, predominant molecular mechanisms of azole resistance in the environment, and the implications for human health (3) future trends and perspectives that could help reduce the ecological and human health risks of azoles and tackle the spread of azole resistance in the environment, and hence in the clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abastabar M et al (2019) Novel point mutations in cyp51A and cyp51B genes associated with itraconazole and posaconazole resistance in Aspergillus clavatus isolates. Microb Drug Resist 25:652–662

    Article  CAS  Google Scholar 

  • Africa CWJ, dos Santos Abrantes PM (2016) Candida antifungal drug resistance in sub-Saharan African populations: a systematic review. F1000Res 5:2832

    Article  Google Scholar 

  • Alastruey-Izquierdo A, Melhem MS, Bonfietti LX, Rodriguez-Tudela JL (2015) Susceptibility test for fungi: clinical and laboratorial correlations in medical mycology. Rev Inst Med Trop Sao Paulo 57:57–64

    Article  CAS  Google Scholar 

  • Alvarez-Moreno C, Lavergne R-A, Hagen F, Morio F, Meis JF, Le Pape P (2019) Fungicide-driven alterations in azole-resistant Aspergillus fumigatus are related to vegetable crops in Colombia, South America. Mycologia 111:217–224

    Article  CAS  Google Scholar 

  • Anderson JB (2005) Evolution of antifungal-drug resistance: mechanisms and pathogen fitness nature. Rev Microbiol 3:547–556

    CAS  Google Scholar 

  • Ankley GT et al (2007) Ketoconazole in the fathead minnow (Pimephales promelas): reproductive toxicity and biological compensation. Environ Toxicol Chem 26:1214–1223. https://doi.org/10.1897/06-428r.1

    Article  CAS  Google Scholar 

  • Ankley GT et al (2012) A time-course analysis of effects of the steroidogenesis inhibitor ketoconazole on components of the hypothalamic-pituitary-gonadal axis of fathead minnows. Aquat Toxicol 114–115:88–95. https://doi.org/10.1016/j.aquatox.2012.02.012

    Article  CAS  Google Scholar 

  • Ashfaq M, Noor N, Saif-Ur-Rehman M, Sun Q, Mustafa G, Faizan Nazar M, Yu CP (2017) Determination of commonly used pharmaceuticals in hospital waste of Pakistan and evaluation of their ecological risk assessment. Clean: Soil, Air, Water 45:1500392

    Google Scholar 

  • Ashu EE, Hagen F, Chowdhary A, Meis JF, Xu J (2017) Global population genetic analysis of Aspergillus fumigatus. mSphere. https://doi.org/10.1128/mSphere.00019-17

    Article  Google Scholar 

  • Assress HA, Selvarajan R, Nyoni H, Ntushelo K, Mamba BB, Msagati TAM (2019) Diversity, co-occurrence and implications of fungal communities in wastewater treatment plants. Sci Rep 9:1–5. https://doi.org/10.1038/s41598-019-50624-z

    Article  CAS  Google Scholar 

  • Assress HA, Nyoni H, Mamba BB, Msagati TAM (2020) Occurrence and risk assessment of azole antifungal drugs in water and wastewater. Ecotoxicol Environ Saf 187:109868. https://doi.org/10.1016/j.ecoenv.2019.109868

    Article  CAS  Google Scholar 

  • Azevedo M-M, Faria-Ramos I, Cruz LC, Pina-Vaz C, Goncalves Rodrigues A (2015) Genesis of azole antifungal resistance from agriculture to clinical settings. J Agric Food Chem 63:7463–7468

    Article  CAS  Google Scholar 

  • Barron L, Tobin J, Paull B (2008) Multi-residue determination of pharmaceuticals in sludge and sludge enriched soils using pressurized liquid extraction, solid phase extraction and liquid chromatography with tandem mass spectrometry. J Environ Monit 10:353–361

    Article  CAS  Google Scholar 

  • Beardsley J, Halliday CL, Chen SC, Sorrell TC (2018) Responding to the emergence of antifungal drug resistance: perspectives from the bench and the bedside. Future Microbiol 13:1175–1191

    Article  CAS  Google Scholar 

  • Beijer K, Abrahamson A, Brunström B, Brandt I (2010) CYP1A inhibition in fish gill filaments: a novel assay applied on pharmaceuticals and other chemicals. Aquat Toxicol 96:145–150. https://doi.org/10.1016/j.aquatox.2009.10.018

    Article  CAS  Google Scholar 

  • Beijer K, Jönsson M, Shaik S, Behrens D, Brunström B, Brandt I (2018) Azoles additively inhibit cytochrome P450 1 (EROD) and 19 (aromatase) in rainbow trout (Oncorhynchus mykiss). Aquat Toxicol 198:73–81. https://doi.org/10.1016/j.aquatox.2018.02.016

    Article  CAS  Google Scholar 

  • Bellmann R, Smuszkiewicz P (2017) Pharmacokinetics of antifungal drugs: practical implications for optimized treatment of patients. Infect 45:737–779. https://doi.org/10.1007/s15010-017-1042-z

    Article  CAS  Google Scholar 

  • Bengtsson-Palme J, Larsson DJ (2016) Concentrations of antibiotics predicted to select for resistant bacteria: proposed limits for environmental regulation. Environ Int 86:140–149

    Article  CAS  Google Scholar 

  • Berg C, Gyllenhammar I, Kvarnryd M (2009) Xenopus tropicalis as a test system for developmental and reproductive toxicity. J Toxicol Environ Health Part A 72:219–225

    Article  CAS  Google Scholar 

  • Berger S, El Chazli Y, Babu AF, Coste AT (2017) Azole resistance in Aspergillus fumigatus: a consequence of antifungal use in agriculture? Front Microbiol 8:1024

    Article  Google Scholar 

  • Berthod L, Roberts G, Sharpe A, Whitley D, Greenwood R, Mills G (2016) Effect of sewage sludge type on the partitioning behaviour of pharmaceuticals: a meta-analysis. Environ Sci Water Res Technol 2:154–163

    Article  CAS  Google Scholar 

  • Beyda ND, Chuang SH, Alam MJ, Shah DN, Ng TM, McCaskey L, Garey KW (2013) Treatment of Candida famata bloodstream infections: case series and review of the literature. J Antimicrob Chemother 68:438–443

    Article  CAS  Google Scholar 

  • Boxall AB (2004) The environmental side effects of medication. EMBO Rep 5:1110–1116

    Article  CAS  Google Scholar 

  • Brauer VS et al (2019) Antifungal agents in agriculture: friends and foes of public health. Biomolecules 9:521

    Article  CAS  Google Scholar 

  • Brilhante RS et al (2016) Azole resistance in Candida spp. isolated from Catú Lake, Ceará, Brazil: an efflux-pump-mediated mechanism. Braz J Microbiol 47:33–38

    Article  CAS  Google Scholar 

  • Bromley MJ, Van Muijlwijk G, Fraczek MG, Robson G, Verweij PE, Denning DW, Bowyer P (2014) Occurrence of azole-resistant species of Aspergillus in the UK environment. J Glob Antimicrob Resist 2:276–279

    Article  Google Scholar 

  • Brown AR et al (2011) Are toxicological responses in laboratory (Inbred) Zebrafish representative of those in outbred (Wild) populations?: A case study with an endocrine disrupting chemical. Environ Sci Technol 45:4166–4172. https://doi.org/10.1021/es200122r

    Article  CAS  Google Scholar 

  • Brown GD, Denning DW, Gow NA, Levitz SM, Netea MG, White TC (2012) Hidden killers: human fungal infections. Sci Transl Med 4: 165rv113–165rv113

  • Burkina V, Zlabek V, Zamaratskaia G (2013) Clotrimazole, but not dexamethasone, is a potent in vitro inhibitor of cytochrome P450 isoforms CYP1A and CYP3A in rainbow trout. Chemosphere 92:1099–1104. https://doi.org/10.1016/j.chemosphere.2013.01.050

    Article  CAS  Google Scholar 

  • Campoy S, Adrio JL (2017) Antifungals. Biochem Pharmacol 133:86–96. https://doi.org/10.1016/j.bcp.2016.11.019

    Article  CAS  Google Scholar 

  • Camps SM et al (2012) Molecular epidemiology of Aspergillus fumigatus isolates harboring the TR34/L98H azole resistance mechanism. J Clin Microbiol 50:2674–2680

    Article  Google Scholar 

  • Caracciolo AB, Topp E, Grenni P (2015) Pharmaceuticals in the environment: biodegradation and effects on natural microbial communities. A Review J Pharm Biomed Anal 106:25–36

    Article  CAS  Google Scholar 

  • Cardoso O, Porcher J-M, Sanchez W (2014) Factory-discharged pharmaceuticals could be a relevant source of aquatic environment contamination: review of evidence and need for knowledge. Chemosphere 115:20–30

    Article  CAS  Google Scholar 

  • Carrillo-Munoz A, Giusiano G, Ezkurra P, Quindós G (2006) Antifungal agents: mode of action in yeast cells. Rev Esp Quimioter 19:130–139

    CAS  Google Scholar 

  • Casadevall A (2018) Fungal diseases in the 21st century: the near and far horizons. Pathog Immun 3:183–196. https://doi.org/10.20411/pai.v3i2.249

    Article  Google Scholar 

  • Casado J, Rodríguez I, Ramil M, Cela R (2014) Selective determination of antimycotic drugs in environmental water samples by mixed-mode solid-phase extraction and liquid chromatography quadrupole time-of-flight mass spectrometry. J Chromatogr A 1339:42–49

    Article  CAS  Google Scholar 

  • Castelli MV, Butassi E, Monteiro MC, Svetaz LA, Vicente F, Zacchino SA (2014) Novel antifungal agents: a patent review (2011–present). Expert OPin Ther Pat 24:323–338

    Article  CAS  Google Scholar 

  • Caston-Osorio J, Rivero A, Torre-Cisneros J (2008) Epidemiology of invasive fungal infection. Int J Antimicrob Agents 32:S103–S109

    Article  CAS  Google Scholar 

  • Castro G, Casado J, Rodríguez I, Ramil M, Ferradás A, Cela R (2016) Time-of-flight mass spectrometry assessment of fluconazole and climbazole UV and UV/H 2 O 2 degradability: kinetics study and transformation products elucidation. Water Res 88:681–690

    Article  CAS  Google Scholar 

  • CDC (2013) Antibiotic resistance threats in the United States, 2013. Centers for disease control and prevention, Atlanta, GA. http://www.cdc.gov/drugresistance/pdf/ar-threats-2013-508.pdf

  • Charuaud L, Jardé E, Jaffrézic A, Liotaud M, Goyat Q, Mercier F, Le Bot B (2019) Veterinary pharmaceutical residues in water resources and tap water in an intensive husbandry area in France. Sci Total Environ 664:605–615

    Article  CAS  Google Scholar 

  • Chen SC, Sorrell TC (2007) Antifungal agents. Med J Aust 187:404

    Article  Google Scholar 

  • Chen Z-F, Ying G-G (2015) Occurrence, fate and ecological risk of five typical azole fungicides as therapeutic and personal care products in the environment: a review. Environ Int 84:142–153

    Article  CAS  Google Scholar 

  • Chen Z-F, Ying G-G, Ma Y-B, Lai H-J, Chen F, Pan C-G (2013a) Occurrence and dissipation of three azole biocides climbazole, clotrimazole and miconazole in biosolid-amended soils. Sci Total Environ 452:377–383

    Article  CAS  Google Scholar 

  • Chen Z-F, Ying G-G, Ma Y-B, Lai H-J, Chen F, Pan C-G (2013b) Typical azole biocides in biosolid-amended soils and plants following biosolid applications. J Agric Food Chem 61:6198–6206

    Article  CAS  Google Scholar 

  • Chen Z-F et al (2014a) Photodegradation of the azole fungicide fluconazole in aqueous solution under UV-254: kinetics, mechanistic investigations and toxicity evaluation. Water Res 52:83–91. https://doi.org/10.1016/j.watres.2013.12.039

    Article  CAS  Google Scholar 

  • Chen Z-F et al (2014b) Triclosan as a surrogate for household biocides: an investigation into biocides in aquatic environments of a highly urbanized region. Water Res 58:269–279

    Article  CAS  Google Scholar 

  • Chitescu CL, Oosterink E, de Jong J, Stolker AAML (2012) Accurate mass screening of pharmaceuticals and fungicides in water by U-HPLC–Exactive Orbitrap MS. Anal Bionanal Chem 403:2997–3011

    Article  CAS  Google Scholar 

  • Chowdhary A, Meis JF (2018) Emergence of azole resistant Aspergillus fumigatus and one health: time to implement environmental stewardship. Environ Microbiol 20:1299–1301

    Article  Google Scholar 

  • Chowdhary A, Sharma C, van den Boom M, Yntema JB, Hagen F, Verweij PE, Meis JF (2014) Multi-azole-resistant Aspergillus fumigatus in the environment in Tanzania. J Antimicrob Chemother 69:2979–2983

    Article  CAS  Google Scholar 

  • Chowdhary A, Sharma C, Kathuria S, Hagen F, Meis JF (2015) Prevalence and mechanism of triazole resistance in Aspergillus fumigatus in a referral chest hospital in Delhi, India and an update of the situation in Asia. Front Microbiol 6:428

    Article  Google Scholar 

  • CLSI (2010) Method for antifungal disk diffusion susceptibility testing of nondermatophyte filamentous fungi; approved guideline. CLSI document M51-A. Clinical and Laboratory Standards Institute Wayne, PA

  • CLSI (2017) Performance standards for antifungal susceptibility testing of yeasts; Clinical and Laboratory Standards Institute: CLSI supplement M60. Wayne, PA

  • CLSI (2018) Method for antifungal disk diffusion susceptibility testing of yeasts. 3rd edition. CLSI guideline M44. vol CLSI guideline M44. Clinical Laboratory Standards Institute Wayne, PA

  • Corcoran J, Lange A, Cumming RI, Owen SF, Ball JS, Tyler CR, Winter MJ (2014) Bioavailability of the imidazole antifungal agent clotrimazole and its effects on key biotransformation genes in the common carp (Cyprinus carpio). Aquat Toxicol 152:57–65. https://doi.org/10.1016/j.aquatox.2014.03.016

    Article  CAS  Google Scholar 

  • Cowen LE, Sanglard D, Howard SJ, Rogers PD, Perlin DS (2015) Mechanisms of antifungal drug resistance. Cold Spring Harb Perspect Med 5:a019752

    Article  CAS  Google Scholar 

  • Crowley PD, Gallagher HC (2014) Clotrimazole as a pharmaceutical: past, present and future. J Appl Microbiol 117:611–617. https://doi.org/10.1111/jam.12554

    Article  CAS  Google Scholar 

  • Cuenca-Estrella M, Rodriguez-Tudela JL (2010) The current role of the reference procedures by CLSI and EUCAST in the detection of resistance to antifungal agents in vitro. Expert Rev Anti Infect Ther 8:267–276

    Article  CAS  Google Scholar 

  • Cuenca-Estrella M, Gomez-Lopez A, Alastruey-Izquierdo A, Bernal-Martinez L, Cuesta I, Buitrago MJ, Rodriguez-Tudela JL (2010) Comparison of the Vitek 2 antifungal susceptibility system with the clinical and laboratory standards institute (CLSI) and European Committee on Antimicrobial Susceptibility Testing (EUCAST) Broth Microdilution Reference Methods and with the Sensititre YeastOne and Etest techniques for in vitro detection of antifungal resistance in yeast isolates. J Clin Microbiol 48:1782–1786. https://doi.org/10.1128/jcm.02316-09

    Article  Google Scholar 

  • Dalhoff A (2018) Does the use of antifungal agents in agriculture and food foster polyene resistance development? A reason for concern. J Glob Antimicrob Resist 13:40–48. https://doi.org/10.1016/j.jgar.2017.10.024

    Article  Google Scholar 

  • Denning D (1995) Can we prevent azole resistance in fungi? The Lancet 346:454–455

    Article  CAS  Google Scholar 

  • DiDomenico B (1999) Novel antifungal drugs. Curr Opin Microbiol 2:509–515

    Article  CAS  Google Scholar 

  • Dunne K, Hagen F, Pomeroy N, Meis JF, Rogers TR (2017) Intercountry transfer of triazole-resistant Aspergillus fumigatus on plant bulbs. Clin Infect Dis 65:147–149. https://doi.org/10.1093/cid/cix257

    Article  Google Scholar 

  • Eliopoulos GM, Perea S, Patterson TF (2002) Antifungal resistance in pathogenic fungi. Clin Infecti Dis 35:1073–1080

    Article  Google Scholar 

  • Eslami A et al (2015) Occurrence of non-steroidal anti-inflammatory drugs in Tehran source water, municipal and hospital wastewaters, and their ecotoxicological risk assessment. Environ Monit Assess 187:734

    Article  CAS  Google Scholar 

  • Espinel-Ingroff A, Turnidge J (2016) The role of epidemiological cutoff values (ECVs/ECOFFs) in antifungal susceptibility testing and interpretation for uncommon yeasts and moulds. Rev Iberoam Micol 33:63–75

    Article  Google Scholar 

  • Etest (2013) Antifungal susceptibility testing. Biomerieux. https://techlib.biomerieux.com/wcm/techlib/techlib/documents/docLink/Package_Insert/35904001-35905000/Package_Insert_-_9305056_-_D_-_en_-_Etest_-_AFST_WW.pdf. (Accessed 17 Dec 2019)

  • Faria-Ramos I et al (2014) Environmental azole fungicide, prochloraz, can induce cross-resistance to medical triazoles in Candida glabrata. FEMS Yeast Res 14:1119–1123. https://doi.org/10.1111/1567-1364.12193

    Article  CAS  Google Scholar 

  • Fisher MC, Hawkins NJ, Sanglard D, Gurr SJ (2018) Worldwide emergence of resistance to antifungal drugs challenges human health and food security. Sci 360:739–742. https://doi.org/10.1126/science.aap7999

    Article  CAS  Google Scholar 

  • Flowers SA, Colón B, Whaley SG, Schuler MA, Rogers PD (2015) Contribution of clinically derived mutations in ERG11 to azole resistance in Candida albicans. Antimicrob Agents Chemother 59:450–460

    Article  CAS  Google Scholar 

  • Frédéric O, Yves P (2014) Pharmaceuticals in hospital wastewater: their ecotoxicity and contribution to the environmental hazard of the effluent. Chemosphere 115:31–39

    Article  CAS  Google Scholar 

  • Garcia-Rubio R, Cuenca-Estrella M, Mellado E (2017) Triazole resistance in Aspergillus species: an emerging problem. Drugs 77:599–613

    Article  CAS  Google Scholar 

  • Garcia-Rubio R, Monteiro MC, Mellado E (2020) Azole antifungal drugs: mode of action and resistance. In: Reference module in life sciences. pp 1–10. https://doi.org/10.1016/B978-0-12-809633-8.20731-0

  • Ghannoum M (2016) Azole resistance in dermatophytes: prevalence and mechanism of action. J Am Podiatr Med Assoc 106:79–86

    Article  Google Scholar 

  • Ghannoum MA, Rice LB (1999) Antifungal agents: mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance. Clin Microbiol Rev 12:501–517

    Article  CAS  Google Scholar 

  • Gharaghani M, Taghipour S, Mahmoudabadi AZ (2020) Molecular identification, biofilm formation and antifungal susceptibility of Rhodotorula spp. Mol Biol Rep 47:8903–8909

    Article  CAS  Google Scholar 

  • Gomez-Lopez A, Mellado E, Rodriguez-Tudela JL, Cuenca-Estrella M (2005) Susceptibility profile of 29 clinical isolates of Rhodotorula spp. and literature review. J Antimicrob Chemother 55:312–316

    Article  CAS  Google Scholar 

  • Gonçalves SS, Souza ACR, Chowdhary A, Meis JF, Colombo AL (2016) Epidemiology and molecular mechanisms of antifungal resistance in Candida and Aspergillus. Mycoses 59:198–219

    Article  CAS  Google Scholar 

  • González-Ortegón E, Blasco J, Le Vay L, Giménez L (2013) A multiple stressor approach to study the toxicity and sub-lethal effects of pharmaceutical compounds on the larval development of a marine invertebrate. J Hazard Mater 263:233–238

    Article  CAS  Google Scholar 

  • Gottschall N et al (2012) Pharmaceutical and personal care products in groundwater, subsurface drainage, soil, and wheat grain, following a high single application of municipal biosolids to a field. Chemosphere 87:194–203

    Article  CAS  Google Scholar 

  • Gubbins PO, Anaissie EJ (2009) Chapter 7 - Antifungal therapy. In: Anaissie EJ, McGinnis MR, Pfaller MA (eds) Clinical mycology.2nd edn., Churchill Livingstone, Edinburgh, pp 161–165. https://doi.org/10.1016/B978-1-4160-5680-5.00007-4

  • Guevara-Suarez M et al (2016) Identification and antifungal susceptibility of penicillium-like fungi from clinical samples in the United States. J Clin Microbiol 54:2155–2161

    Article  CAS  Google Scholar 

  • Hamdy RF, Zaoutis TE, Seo SK (2017) Antifungal stewardship considerations for adults and pediatrics. Virulence 8:658–672. https://doi.org/10.1080/21505594.2016.1226721

    Article  Google Scholar 

  • Hanamoto S, Nakada N, Yamashita N, Tanaka H (2013) Modeling the photochemical attenuation of down-the-drain chemicals during river transport by stochastic methods and field measurements of pharmaceuticals and personal care products. Environ Sci Technol 47:13571–13577

    Article  CAS  Google Scholar 

  • Hanna N et al (2018) Presence of antibiotic residues in various environmental compartments of Shandong province in eastern China: its potential for resistance development and ecological and human risk. Environ Int 114:131–142

    Article  CAS  Google Scholar 

  • Hare RK et al (2019) In Vivo Selection of a unique tandem repeat mediated azole resistance mechanism (TR120) in Aspergillus fumigatus cyp51A. Denmark Emerg Infect Dis 25:577

    Article  CAS  Google Scholar 

  • Hashimoto A, Hagiwara D, Watanabe A, Yahiro M, Yikelamu A, Yaguchi T, Kamei K (2017) Drug sensitivity and resistance mechanism in Aspergillus section Nigri strains from Japan. Antimicrob Agents Chemother 61:e02583-e12516. https://doi.org/10.1128/aac.02583-16

    Article  CAS  Google Scholar 

  • Hasselberg L, Westerberg S, Wassmur B, Celander MC (2008) Ketoconazole, an antifungal imidazole, increases the sensitivity of rainbow trout to 17α-ethynylestradiol exposure. Aquat Toxicol 86:256–264

    Article  CAS  Google Scholar 

  • Herkert PF et al (2019) Molecular characterization and antifungal susceptibility of clinical Fusarium species from Brazil. Front Microbiol 10:737

    Article  Google Scholar 

  • Hof H (2001) Critical annotations to the use of azole antifungals for plant protection. Antimicrob Agents Chemother 45:2987–2990

    Article  CAS  Google Scholar 

  • Hof H (2008) Is there a serious risk of resistance development to azoles among fungi due to the widespread use and long-term application of azole antifungals in medicine? Drug Resist Updat 11:25–31

    Article  CAS  Google Scholar 

  • Hokken MW, Zwaan B, Melchers W, Verweij P (2019) Facilitators of adaptation and antifungal resistance mechanisms in clinically relevant fungi. Fungal Genet Biol 132:103254

    Article  CAS  Google Scholar 

  • Holmes AR et al (2016) Targeting efflux pumps to overcome antifungal drug resistance. Future Med Chem 8:1485–1501. https://doi.org/10.4155/fmc-2016-0050

    Article  CAS  Google Scholar 

  • Howard SJ, Harrison E, Bowyer P, Varga J, Denning DW (2011) Cryptic species and azole resistance in the Aspergillus niger complex. Antimicrob Agents Chemother 55:4802–4809. https://doi.org/10.1128/aac.00304-11

    Article  CAS  Google Scholar 

  • Huang Q, Yu Y, Tang C, Peng X (2010) Determination of commonly used azole antifungals in various waters and sewage sludge using ultra-high performance liquid chromatography–tandem mass spectrometry. J Chromatogr A 1217:3481–3488

    Article  CAS  Google Scholar 

  • Huang Q, Zhang K, Wang Z, Wang C, Peng X (2012) Enantiomeric determination of azole antifungals in wastewater and sludge by liquid chromatography–tandem mass spectrometry. Anal Bional Chem 403:1751–1760

    Article  CAS  Google Scholar 

  • Huang Q, Wang Z, Wang C, Peng X (2013) Chiral profiling of azole antifungals in municipal wastewater and recipient rivers of the Pearl River Delta, China. Environ Sci Pollut Res 20:8890–8899

    Article  CAS  Google Scholar 

  • Huang Q et al (2018) Development of ultrasound-assisted extraction of commonly used azole antifungals in soils. Anal Methods 10:5265–5272

    Article  CAS  Google Scholar 

  • Isoherranen N, Lutz JD, Chung SP, Hachad H, Levy RH, Ragueneau-Majlessi I (2012) Importance of multi-p450 inhibition in drug-drug interactions: evaluation of incidence, inhibition magnitude, and prediction from in vitro data. Chem Res Toxicol 25:2285–2300. https://doi.org/10.1021/tx300192g

    Article  CAS  Google Scholar 

  • Ida Skaar AA, Cecile TA, Maiken CA, Jorgen VB, Ellen C, Hege HD, Andrea F, Peter G, Einar S, Henning S, Paul EV (2019) Azole resistance in a one health perspective. Norwegian Veterinary Institute

  • Jamiu A, Albertyn J, Sebolai O, Pohl C (2021) Update on Candida krusei, a potential multidrug-resistant pathogen. Med Mycol 59:14–30

    Article  CAS  Google Scholar 

  • Jeanvoine A, Rocchi S, Bellanger A, Reboux G, Millon L (2019) Azole-resistant Aspergillus fumigatus: a global phenomenon originating in the environment? Med Mal Infect 50:389–395

    Article  Google Scholar 

  • Jerker Fick RHL, Lennart Kaj, Eva Brorstrom-Lunden (2011) Results from the Swedish national screening programme 2010

  • Ji K, Seo J, Kho Y, Choi K (2019) Co-exposure to ketoconazole alters effects of bisphenol A in Danio rerio and H295R cells. Chemosphere 237:124414

    Article  CAS  Google Scholar 

  • Kahle M, Buerge IJ, Hauser A, Muller MD, Poiger T (2008) Azole fungicides: occurrence and fate in wastewater and surface waters. Environ Sci Technol 42:7193–7200

    Article  CAS  Google Scholar 

  • Kahlmeter G, Brown D (2017) Are breakpoints for phenotypic susceptibility testing no longer needed? Clin Microbiol Infect 23:1

    Article  CAS  Google Scholar 

  • Khadka S et al (2017) Isolation, speciation and antifungal susceptibility testing of Candida isolates from various clinical specimens at a tertiary care hospital. Nepal BMC Res Notes 10:1–5

    CAS  Google Scholar 

  • Kim J-W et al (2009) Acute toxicity of pharmaceutical and personal care products on freshwater crustacean (Thamnocephalus platyurus) and fish (Oryzias latipes). J Toxicol Sci 34:227–232

    Article  CAS  Google Scholar 

  • Kjærstad MB, Taxvig C, Nellemann C, Vinggaard AM, Andersen HR (2010) Endocrine disrupting effects in vitro of conazole antifungals used as pesticides and pharmaceuticals. Reprod Toxicol 30:573–582. https://doi.org/10.1016/j.reprotox.2010.07.009

    Article  CAS  Google Scholar 

  • Kołaczkowska A, Kołaczkowski M (2016) Drug resistance mechanisms and their regulation in non-albicans Candida species. J Antimicrob Chemother 71:1438–1450

    Article  CAS  Google Scholar 

  • Krasulova K, Dvorak Z, Anzenbacher P (2019) In vitro analysis of itraconazole cis-diastereoisomers inhibition of nine cytochrome P450 enzymes: stereoselective inhibition of CYP3A. Xenobiotica 49:36–42

    Article  CAS  Google Scholar 

  • Krishnan-Natesan S, Chandrasekar PH, Alangaden GJ, Manavathu EK (2008) Molecular characterisation of cyp51A and cyp51B genes coding for P450 14α-lanosterol demethylases A (CYP51Ap) and B (CYP51Bp) from voriconazole-resistant laboratory isolates of Aspergillus flavus. Int J Antimicrob Agents 32:519–524

    Article  CAS  Google Scholar 

  • Krishnasamy L, Krishnakumar S, Kumaramanickavel G, Saikumar C (2018) Molecular mechanisms of antifungal drug resistance in Candida species. J Clin Diagn Res 12:1–6

    Google Scholar 

  • Kryczyk-Poprawa A, Żmudzki P, Maślanka A, Piotrowska J, Opoka W, Muszyńska B (2019) Mycoremediation of azole antifungal agents using in vitro cultures of Lentinula edodes. 3 Biotech 9:207

    Article  Google Scholar 

  • Ksiezopolska E, Gabaldón T (2018) Evolutionary emergence of drug resistance in Candida opportunistic pathogens. Genes 9:461

    Article  CAS  Google Scholar 

  • Kunkel U, Radke M (2012) Fate of pharmaceuticals in rivers: deriving a benchmark dataset at favorable attenuation conditions. Water Res 46:5551–5565

    Article  CAS  Google Scholar 

  • Lacey C, McMahon G, Bones J, Barron L, Morrissey A, Tobin J (2008) An LC–MS method for the determination of pharmaceutical compounds in wastewater treatment plant influent and effluent samples. Talanta 75:1089–1097

    Article  CAS  Google Scholar 

  • Lacey C, Basha S, Morrissey A, Tobin JM (2012) Occurrence of pharmaceutical compounds in wastewater process streams in Dublin, Ireland. Environ Monit Assess 184:1049–1062

    Article  CAS  Google Scholar 

  • Lago M, Aguiar A, Natário A, Fernandes C, Faria M, Pinto E (2014) Does fungicide application in vineyards induce resistance to medical azoles in Aspergillus species? Environ Monit Assess 186:5581–5593

    Article  CAS  Google Scholar 

  • Lepesheva GI, Waterman MR (2007) Sterol 14α-demethylase cytochrome P450 (CYP51), a P450 in all biological kingdoms. Biochim Biophys Acta Gen Subj 1770:467–477

    Article  CAS  Google Scholar 

  • Levine SL, Czosnyka H, Oris JT (1997) Effect of the fungicide clotrimazole on the bioconcentration of benzo [a] pyrene in gizzard shad (Dorosoma cepedianum): in vivo and in vitro inhibition of cytochrome P4501A activity. Environ Toxicol Chem 16:306–311

    Article  CAS  Google Scholar 

  • Li Y, Wang H, Zhao Y-P, Xu Y-C, Hsueh P-R (2020) Antifungal susceptibility of clinical isolates of 25 genetically confirmed Aspergillus species collected from Taiwan and Mainland China. J Microbiol, Immunol Infect 53:125–132. https://doi.org/10.1016/j.jmii.2018.04.003

    Article  CAS  Google Scholar 

  • Lieberman A, Curtis L (2018) Severe adverse reactions following ketoconazole fluconazole, and environmental exposures: a case report. Drug Safety Case Rep 5:18. https://doi.org/10.1007/s40800-018-0083-2

    Article  Google Scholar 

  • Lindberg RH, Fick J, Tysklind M (2010) Screening of antimycotics in Swedish sewage treatment plants–waters and sludge. Water Res 44:649–657

    Article  CAS  Google Scholar 

  • Lindberg RH, Östman M, Olofsson U, Grabic R, Fick J (2014) Occurrence and behaviour of 105 active pharmaceutical ingredients in sewage waters of a municipal sewer collection system. Water Res 58:221–229

    Article  CAS  Google Scholar 

  • Liu J, Lu G, Yang H, Yan Z, Wang Y, Wang P (2016a) Bioconcentration and metabolism of ketoconazole and effects on multi-biomarkers in crucian carp (Carassius auratus). Chemosphere 150:145–151

    Article  CAS  Google Scholar 

  • Liu N, Wang C, Su H, Zhang W, Sheng C (2016b) Strategies in the discovery of novel antifungal scaffolds. Future Med Chem 8:1435–1454

    Article  CAS  Google Scholar 

  • Liu W-R et al (2017) Biocides in wastewater treatment plants: mass balance analysis and pollution load estimation. J Hazard Mater 329:310–320. https://doi.org/10.1016/j.jhazmat.2017.01.057

    Article  CAS  Google Scholar 

  • Lockhart SR, Berkow EL (2019) Antifungal susceptibility testing: the times they are a-changing. Clin Microbiol Newsl 41:85–90

    Article  Google Scholar 

  • Lockhart SR, Ghannoum MA, Alexander BD (2017) Establishment and use of epidemiological cutoff values for molds and yeasts by use of the clinical and laboratory standards institute M57 standard. J Clin Microbiol 55:1262. https://doi.org/10.1128/jcm.02416-16

    Article  Google Scholar 

  • Loeffler J, Stevens DA (2003) Antifungal drug resistance. Clin Infect Dis 36:S31–S41

    Article  CAS  Google Scholar 

  • Lohberger A, Coste AT, Sanglard D (2014) Distinct roles of Candida albicans drug resistance transcription factors TAC1, MRR1, and UPC2 in virulence. Eukaryot Cell 13:127–142

    Article  CAS  Google Scholar 

  • Martinez R (2006) An update on the use of antifungal agents. J Bras Pneumol 32:449–460

    Article  Google Scholar 

  • Martinez-Rossi NM, Peres NT, Rossi A (2008) Antifungal resistance mechanisms in dermatophytes. Mycopathologia 166:369

    Article  Google Scholar 

  • Mellado E, Diaz-Guerra T, Cuenca-Estrella M, Rodriguez-Tudela J (2001) Identification of two different 14-α sterol demethylase-related genes (cyp51A and cyp51B) in Aspergillus fumigatus and other Aspergillus species. J Clin Microbiol 39:2431–2438

    Article  CAS  Google Scholar 

  • Meredith TA (2006) Chapter 133 - Vitrectomy for infectious endophthalmitis. In: Ryan SJ, Hinton DR, Schachat AP, Wilkinson CP (eds) Retina. 4th edn.,. Mosby, Edinburgh, pp 2255–2275. https://doi.org/10.1016/B978-0-323-02598-0.50139-7

  • Metzger JW (2004) Drugs in municipal landfills and landfill leachates. In: Kümmerer K (ed) Pharmaceuticals in the Environment: Sources, Fate, Effects and Risks. Springer, Berlin, pp 133–137. https://doi.org/10.1007/978-3-662-09259-0_10

  • Miller RA (2018) A case for antifungal stewardship. Curr Fungal Infect Rep 12:33–43

    Article  Google Scholar 

  • Monapathi M, Bezuidenhout C, Rhode O (2018) Efflux pumps genes of clinical origin are related to those from fluconazole-resistant Candida albicans isolates from environmental water. Water Sci Technol 77:899–908

    Article  CAS  Google Scholar 

  • Monteiro C, Pinheiro D, Maia M, Faria MA, Lameiras C, Pinto E (2019) Aspergillus species collected from environmental air samples in Portugal-molecular identification, antifungal susceptibility and sequencing of cyp51A gene on A-fumigatus sensu stricto itraconazole resistant. J Appl Microbiol 126:1140–1148. https://doi.org/10.1111/jam.14217

    Article  CAS  Google Scholar 

  • Munkboel CH, Rasmussen TB, Elgaard C, Olesen M-LK, Kretschmann AC, Styrishave B (2019) The classic azole antifungal drugs are highly potent endocrine disruptors in vitro inhibiting steroidogenic CYP enzymes at concentrations lower than therapeutic Cmax. Toxicol 425:152247. https://doi.org/10.1016/j.tox.2019.152247

    Article  CAS  Google Scholar 

  • Nabili M et al (2016) High prevalence of clinical and environmental triazole-resistant Aspergillus fumigatus in Iran: is it a challenging issue? J Med Microbiol 65:468–475

    Article  CAS  Google Scholar 

  • Nett JE, Andes DR (2016) Antifungal agents: spectrum of activity, pharmacology, and clinical indications. Infect Dis Clin North Am 30:51–83. https://doi.org/10.1016/j.idc.2015.10.012

    Article  Google Scholar 

  • Niwa T, Inoue-Yamamoto S, Shiraga T, Takagi A (2005) Effect of antifungal drugs on cytochrome P450 (CYP) 1A2, CYP2D6, and CYP2E1 activities in human liver microsomes. Biol Pharm Bull 28:1813–1816

    Article  CAS  Google Scholar 

  • Odds FC, Brown AJ, Gow NA (2003) Antifungal agents: mechanisms of action. Trends Microbiol 11:272–279

    Article  CAS  Google Scholar 

  • Osińska A et al (2020) Small-scale wastewater treatment plants as a source of the dissemination of antibiotic resistance genes in the aquatic environment. J Hazard Mater 381:121221. https://doi.org/10.1016/j.jhazmat.2019.121221

    Article  CAS  Google Scholar 

  • Östman M, Lindberg RH, Fick J, Björn E, Tysklind M (2017) Screening of biocides, metals and antibiotics in Swedish sewage sludge and wastewater. Water Res 115:318–328

    Article  CAS  Google Scholar 

  • Paul R, Rudramurthy S, Meis J, Mouton J, Chakrabarti A (2015) A novel Y319H substitution in CYP51C associated with azole resistance in Aspergillus flavus. Antimicrob Agents Chemother 59:6615–6619

    Article  CAS  Google Scholar 

  • Paul RA et al (2018) Magnitude of voriconazole resistance in clinical and environmental isolates of Aspergillus flavus and investigation into the role of multidrug efflux pumps. Antimicrob Agents Chemother 62:e01022-e11018

    Article  Google Scholar 

  • Peng X, Huang Q, Zhang K, Yu Y, Wang Z, Wang C (2012) Distribution, behavior and fate of azole antifungals during mechanical, biological, and chemical treatments in sewage treatment plants in China. Sci Total Environ 426:311–317

    Article  CAS  Google Scholar 

  • Peng X, Ou W, Wang C, Wang Z, Huang Q, Jin J, Tan J (2014) Occurrence and ecological potential of pharmaceuticals and personal care products in groundwater and reservoirs in the vicinity of municipal landfills in China. Sci Total Environ 490:889–898

    Article  CAS  Google Scholar 

  • Pfaller MA (2012a) Antifungal drug resistance: mechanisms, epidemiology, and consequences for treatment. Amer J Med 125:S3–S13

    Article  CAS  Google Scholar 

  • Pfaller MA (2012b) Antifungal drug resistance: mechanisms, epidemiology, and consequences for treatment. Am J Med 125:S3–S13. https://doi.org/10.1016/j.amjmed.2011.11.001

    Article  CAS  Google Scholar 

  • Pfaller M, Messer S, Boyken L, Rice C, Tendolkar S, Hollis R, Diekema D (2008) In vitro survey of triazole cross-resistance among more than 700 clinical isolates of Aspergillus species. J Clin Microbiol 46:2568–2572

    Article  CAS  Google Scholar 

  • Pfaller M et al (2010) Results from the ARTEMIS DISK global antifungal surveillance study, 1997 to 2007: a 10.5-year analysis of susceptibilities of Candida species to fluconazole and voriconazole as determined by CLSI standardized disk diffusion. J Clin Microbiol 48:1366–1377

    Article  CAS  Google Scholar 

  • Pfaller M et al (2011) Comparison of the broth microdilution (BMD) method of the European Committee on Antimicrobial Susceptibility Testing with the 24-hour CLSI BMD method for testing susceptibility of Candida species to fluconazole, posaconazole, and voriconazole by use of epidemiological cutoff values. J Clin Microbiol 49:845–850

    Article  CAS  Google Scholar 

  • Pianalto KM, Alspaugh JA (2016) New Horizons in antifungal therapy. J Fungi 2:26

    Article  CAS  Google Scholar 

  • Porsbring T, Blanck H, Tjellström H, Backhaus T (2009) Toxicity of the pharmaceutical clotrimazole to marine microalgal communities. Aquat Toxicol 91:203–211. https://doi.org/10.1016/j.aquatox.2008.11.003

    Article  CAS  Google Scholar 

  • Posteraro B, Sanguinetti M (2014) The future of fungal susceptibility testing. Future Microbiol 9:947–967

    Article  CAS  Google Scholar 

  • Prasad R, Nair R, Banerjee A (2019) Multidrug transporters of Candida species in clinical azole resistance. Fungal Genet Biol 132:103252

    Article  CAS  Google Scholar 

  • Prasad R, Shah AH, Rawal MK (2016) Antifungals: mechanism of action and drug resistance. In: Yeast Membrane Transport. Springer, pp 327–349

  • Prigitano A, Esposto MC, Romanò L, Auxilia F, Tortorano AM (2019) Azole-resistant Aspergillus fumigatus in the Italian environment. J Glob Antimicrob Resist 16:220–224

    Article  Google Scholar 

  • Pristov KE, Ghannoum MA (2019) Resistance of Candida to azoles and echinocandins worldwide. Clin Microbiol Infect 25:792–798

    Article  CAS  Google Scholar 

  • Rajendran M, Khaithir TMN, Santhanam J (2016) Determination of azole antifungal drug resistance mechanisms involving Cyp51A gene in clinical isolates of Aspergillus fumigatus and Aspergillus niger. Malays J Microbiol 12:205–210

    CAS  Google Scholar 

  • Reis EO et al (2019) Occurrence, removal and seasonal variation of pharmaceuticals in Brasilian drinking water treatment plants. Environ Pollut 250:773–781. https://doi.org/10.1016/j.envpol.2019.04.102

    Article  CAS  Google Scholar 

  • Revie NM, Iyer KR, Robbins N, Cowen LE (2018) Antifungal drug resistance: evolution, mechanisms and impact. Curr Opin Microbiol 45:70–76

    Article  CAS  Google Scholar 

  • Riat A, Plojoux J, Gindro K, Schrenzel J, Sanglard D (2018) Azole resistance of environmental and clinical Aspergillus fumigatus isolates from Switzerland. Antimicrob Agents Chemother 62:e02088-e12017

    Article  CAS  Google Scholar 

  • Richardson M, Rautemaa-Richardson R (2019) Exposure to Aspergillus in Home and Healthcare facilities’ water environments: focus on biofilms. Microorganisms 7:7. https://doi.org/10.3390/microorganisms7010007

    Article  CAS  Google Scholar 

  • Rocha MFG et al (2016) Cross-resistance to fluconazole induced by exposure to the agricultural azole tetraconazole: an environmental resistance school? Mycoses 59:281–290

    Article  CAS  Google Scholar 

  • Rochette F, Engelen M, Vanden Bossche H (2003) Antifungal agents of use in animal health–practical applications. J Vet Pharmacol Ther 26:31–53

    Article  CAS  Google Scholar 

  • Roemer T, Krysan DJ (2014) Antifungal drug development: challenges, unmet clinical needs, and new approaches. Cold Spring Harb Perspect Med 4:a019703

    Article  CAS  Google Scholar 

  • Rossmann J, Schubert S, Gurke R, Oertel R, Kirch W (2014) Simultaneous determination of most prescribed antibiotics in multiple urban wastewater by SPE-LC–MS/MS. J Chromatogr B 969:162–170

    Article  CAS  Google Scholar 

  • Rybak JM, Doorley LA, Nishimoto AT, Barker KS, Palmer GE, Rogers PD (2019) Abrogation of triazole resistance upon deletion of CDR1 in a clinical isolate of Candida auris. Antimicrob Agents Chemother 63:e00057-e119

    Article  CAS  Google Scholar 

  • Sabourin L et al (2009) Runoff of pharmaceuticals and personal care products following application of dewatered municipal biosolids to an agricultural field. Sci Total Environ 407:4596–4604

    Article  CAS  Google Scholar 

  • Salsé M et al (2019) Multicentre study to determine the Etest epidemiological cut-off values of antifungal drugs in Candida spp. and Aspergillus fumigatus species complex. Clin Microbiol Infect 25:1546–1552

    Article  Google Scholar 

  • Sandoval-Denis M, Gené J, Sutton D, Wiederhold N, Cano-Lira J, Guarro J (2016) New species of Cladosporium associated with human and animal infections. Persoonia Mol Phylogeny Evol Fungi 36:281

    Article  CAS  Google Scholar 

  • Sanglard D (2002) Resistance of human fungal pathogens to antifungal drugs. Curr Opin Microbiol 5:379–385

    Article  CAS  Google Scholar 

  • Sanglard D (2003) Resistance and tolerance mechanisms to antifungal drugs in fungal pathogens. Mycologist 17:74–78

    Article  Google Scholar 

  • Sanglard D (2016) Emerging threats in antifungal-resistant fungal pathogens. Front Med 3:11. https://doi.org/10.3389/fmed.2016.00011

    Article  Google Scholar 

  • Sanguinetti M, Posteraro B (2017) New approaches for antifungal susceptibility testing. Clin Microbiol Infect 23:931–934

    Article  CAS  Google Scholar 

  • Sanguinetti M, Posteraro B (2018) Susceptibility testing of fungi to antifungal drugs. J Fungi (basel) 4:110. https://doi.org/10.3390/jof4030110

    Article  CAS  Google Scholar 

  • Sanguinetti M, Posteraro B, Lass-Flörl C (2015) Antifungal drug resistance among Candida species: mechanisms and clinical impact. Mycoses 58:2–13

    Article  Google Scholar 

  • Sav H et al (2018) Biofilm formation and resistance to fungicides in clinically relevant members of the fungal genus fusarium. J Fungi 4:16

    Article  CAS  Google Scholar 

  • Schinabeck M, Ghannoum M (2003) Human hyalohyphomycoses: a review of human infections due to Acremonium spp., Paecilomyces spp., Penicillium spp., and Scopulariopsis spp. J Chemother 15:5–15

    Article  Google Scholar 

  • Seifi Z, Zarei Mahmoudabadi A, Hydrinia S (2013) Isolation, identification and susceptibility profile of Rhodotorula species isolated from two educational hospitals in Ahvaz. Jundishapur J Microbiol 6(6):e8935. https://doi.org/10.5812/jjm.8935

    Article  Google Scholar 

  • Seyedmousavi S, Guillot J, Arné P, de Hoog GS, Mouton JW, Melchers WJG, Verweij PE (2015) Aspergillus and aspergilloses in wild and domestic animals: a global health concern with parallels to human disease. Med Mycol 53:765–797. https://doi.org/10.1093/mmy/myv067

    Article  Google Scholar 

  • Sharma C, Kumar R, Kumar N, Masih A, Gupta D, Chowdhary A (2018) Investigation of multiple resistance mechanisms in voriconazole-resistant Aspergillus flavus clinical isolates from a chest hospital surveillance in Delhi, India. Antimicrob Agents Chemother 62:e01928-e11917. https://doi.org/10.1128/aac.01928-17

    Article  CAS  Google Scholar 

  • Sharma C, Nelson-Sathi S, Singh A, Radhakrishna Pillai M, Chowdhary A (2019) Genomic perspective of triazole resistance in clinical and environmental Aspergillus fumigatus isolates without cyp51A mutations. Fungal Genet Biol 132:103265. https://doi.org/10.1016/j.fgb.2019.103265

    Article  CAS  Google Scholar 

  • Shi H, Sun Z, Liu Z, Xue Y (2012) Effects of clotrimazole and amiodarone on early development of amphibian (Xenopus tropicalis). Toxicol Environ Chem 94:128–135

    Article  CAS  Google Scholar 

  • Shoham S, Groll AH, Petraitis V, Walsh TJ (2017) Systemic antifungal agents. In: Infectious diseases. Elsevier, pp 1333–1344. e1334

  • Shrestha SK, Garzan A, Garneau-Tsodikova S (2017) Novel alkylated azoles as potent antifungals. Eur J Med Chem 133:309–318

    Article  CAS  Google Scholar 

  • Singer AC, Shaw H, Rhodes V, Hart A (2016) Review of antimicrobial resistance in the environment and its relevance to environmental regulators. Front Microbiol 7:1728

    Article  Google Scholar 

  • Siqueira RA et al (2018) Evaluation of two commercial methods for the susceptibility testing of Candida species: Vitek 2® and Sensititre YeastOne®. Rev Iberoam Micol 35:83–87. https://doi.org/10.1016/j.riam.2017.11.001

    Article  Google Scholar 

  • Snelders E et al (2008) Emergence of azole resistance in Aspergillus fumigatus and spread of a single resistance mechanism. PLoS Med 5:e219

    Article  CAS  Google Scholar 

  • Snelders E, Rijs AJ, Kema GH, Melchers WJ, Verweij PE (2009) Possible environmental origin of resistance of Aspergillus fumigatus to medical triazoles. Appl Environ Microbiol 75:4053–4057

    Article  CAS  Google Scholar 

  • Snelders E et al (2012) Triazole fungicides can induce cross-resistance to medical triazoles in Aspergillus fumigatus. PLoS ONE 7:e31801

    Article  CAS  Google Scholar 

  • Sychev DA et al (2018) The cytochrome P450 isoenzyme and some new opportunities for the prediction of negative drug interaction in vivo. Drug Des Devel Ther 12:1147–1156. https://doi.org/10.2147/dddt.s149069

    Article  CAS  Google Scholar 

  • Taboada J, Grooters AM (2008) Chapter 9 - Systemic antifungal therapy. In: Maddison JE, Page SW, Church DB (eds) Small animal clinical pharmacology, 2nd edn., W.B. Saunders, Edinburgh, pp 186–197. https://doi.org/10.1016/B978-070202858-8.50011-7

  • Talbot JJ et al (2019) cyp51A mutations, extrolite profiles, and antifungal susceptibility in clinical and environmental isolates of the Aspergillus viridinutans species complex. Antimicrob Agents Chemother 63:e00632-e1619

    Article  CAS  Google Scholar 

  • Tangwattanachuleeporn M et al (2016) Prevalence of azole-resistant Aspergillus fumigatus in the environment of Thailand. Med Mycol 55:429–435. https://doi.org/10.1093/mmy/myw090

    Article  CAS  Google Scholar 

  • Terças AL, Marques SG, Moffa EB, Alves MB, de Azevedo CM, Siqueira WL, Monteiro CA (2017) Antifungal drug susceptibility of Candida species isolated from HIV-positive patients recruited at a public hospital in São Luís, Maranhão. Brazil Front Microbiol 8:298

    Google Scholar 

  • Thapa U, Hanigan D (2020) Waterless urinals remove select pharmaceuticals from urine by phase partitioning. Environ Sci Technol 54:6344–6352. https://doi.org/10.1021/acs.est.9b06205

    Article  CAS  Google Scholar 

  • Trösken ER, Bittner N, Völkel W (2005) Quantitation of 13 azole fungicides in wine samples by liquid chromatography–tandem mass spectrometry. J Chromatogr A 1083:113–119

    Article  CAS  Google Scholar 

  • Tsao S, Rahkhoodaee F, Raymond M (2009) Relative contributions of the Candida albicans ABC transporters Cdr1p and Cdr2p to clinical azole resistance. Antimicrob Agents Chemother 53:1344–1352

    Article  CAS  Google Scholar 

  • Van De Steene JC, Lambert WE (2008) Validation of a solid-phase extraction and liquid chromatography–electrospray tandem mass spectrometric method for the determination of nine basic pharmaceuticals in wastewater and surface water samples. J Chromatogr A 1182:153–160

    Article  CAS  Google Scholar 

  • Van Der Linden JW, Warris A, Verweij PE (2011) Aspergillus species intrinsically resistant to antifungal agents. Medl Mycol 49:S82–S89

    Article  Google Scholar 

  • Van der Linden J et al (2015) Prospective multicenter international surveillance of azole resistance in Aspergillus fumigatus. Emerg Infect Dis 21:1041

    Article  CAS  Google Scholar 

  • Vandeputte P, Ferrari S, Coste AT (2011) Antifungal resistance and new strategies to control fungal infections. Int J Microbiol 2012:1–26

    Article  CAS  Google Scholar 

  • Velpandian T, Halder N, Nath M, Das U, Moksha L, Gowtham L, Batta SP (2018) Un-segregated waste disposal: an alarming threat of antimicrobials in surface and ground water sources in Delhi. Environ Sci Pollut Res 25:29518–29528. https://doi.org/10.1007/s11356-018-2927-9

    Article  Google Scholar 

  • Verweij PE, Snelders E, Kema GH, Mellado E, Melchers WJ (2009) Azole resistance in Aspergillus fumigatus: a side-effect of environmental fungicide use? Lancet Infect Dis 9:789–795

    Article  CAS  Google Scholar 

  • Vestel J et al (2016) Use of acute and chronic ecotoxicity data in environmental risk assessment of pharmaceuticals. Environ Toxicol Chem 35:1201–1212

    Article  CAS  Google Scholar 

  • Walters E, McClellan K, Halden RU (2010) Occurrence and loss over three years of 72 pharmaceuticals and personal care products from biosolids–soil mixtures in outdoor mesocosms. Water Res 44:6011–6020

    Article  CAS  Google Scholar 

  • Wang HC et al (2018) Prevalence, mechanisms and genetic relatedness of the human pathogenic fungus Aspergillus fumigatus exhibiting resistance to medical azoles in the environment of Taiwan. Environ Microbiol 20:270–280

    Article  CAS  Google Scholar 

  • Warnock DW (2007) Trends in the epidemiology of invasive fungal infections. Nippon Ishinkin Gakkai Zasshi 48:1–12

    Article  Google Scholar 

  • White TC, Marr KA, Bowden RA (1998) Clinical, cellular, and molecular factors that contribute to antifungal drug resistance. Clin Microbiol Rev 11:382–402

    Article  CAS  Google Scholar 

  • Wiederhold NP (2017) Antifungal resistance: current trends and future strategies to combat. Infect Drug Resist 10:249–259. https://doi.org/10.2147/idr.s124918

    Article  CAS  Google Scholar 

  • Wightwick AM et al (2012) Environmental fate of fungicides in surface waters of a horticultural-production catchment in southeastern Australia. Arch Environ Contam Toxicol 62:380–390

    Article  CAS  Google Scholar 

  • Wirth F, Goldani LZ (2012) Epidemiology of Rhodotorula: an emerging pathogen. Interdiscip Perspect Infect Dis 2012:1–7

    Article  Google Scholar 

  • Wishart DS et al (2018) DrugBank 5.0: a major update to the DrugBank database for 2018. Nucl Acids Res 46:D1074–D1082. https://doi.org/10.1093/nar/gkx1037

    Article  CAS  Google Scholar 

  • Wu X, Lu Y, Zhou S, Chen L, Xu B (2016) Impact of climate change on human infectious diseases: empirical evidence and human adaptation. Environ Int 86:14–23. https://doi.org/10.1016/j.envint.2015.09.007

    Article  Google Scholar 

  • Xie JL, Polvi EJ, Shekhar-Guturja T, Cowen LE (2014) Elucidating drug resistance in human fungal pathogens. Future Microbiol 9:523–542

    Article  CAS  Google Scholar 

  • Yamagishi T, Horie Y, Tatarazako N (2017) Synergism between macrolide antibiotics and the azole fungicide ketoconazole in growth inhibition testing of the green alga Pseudokirchneriella subcapitata. Chemosphere 174:1–7. https://doi.org/10.1016/j.chemosphere.2017.01.071

    Article  CAS  Google Scholar 

  • Yamamoto H et al (2009) Persistence and partitioning of eight selected pharmaceuticals in the aquatic environment: laboratory photolysis, biodegradation, and sorption experiments. Water Res 43:351–362

    Article  CAS  Google Scholar 

  • Yan Z, Lu G, Wu D, Ye Q, Xie Z (2013) Interaction of 17β-estradiol and ketoconazole on endocrine function in goldfish (Carassius auratus). Aquat Toxicol 132:19–25

    Article  CAS  Google Scholar 

  • Yang Y-L et al (2012) Comparison of human and soil Candida tropicalis isolates with reduced susceptibility to fluconazole. PLoS ONE 7:e34609–e34609. https://doi.org/10.1371/journal.pone.0034609

    Article  CAS  Google Scholar 

  • Zarn JA, Brüschweiler BJ, Schlatter JR (2003) Azole fungicides affect mammalian steroidogenesis by inhibiting sterol 14 alpha-demethylase and aromatase. Environ Health Perspect 111:255

    Article  CAS  Google Scholar 

  • Zarrin M, Faramarzi S (2018) Study of azole-resistant and Cyp51a gene in Aspergillus fumigatus. Maced J Med Sci 6:747

    Article  Google Scholar 

  • Zavrel M, Esquivel BD, White TC (2014) The ins and outs of azole antifungal drug resistance: molecular mechanisms of transport. Handbook of antimicrobial resistance, pp 1–27

  • Zavrel M, Esquivel BD, White TC (2017) The ins and outs of azole antifungal drug resistance: molecular mechanisms of transport. Handbook of antimicrobial resistance, pp 423–452

  • Zgoła-Grześkowiak A, Grześkowiak T (2013) Application of dispersive liquid–liquid microextraction followed by HPLC–MS/MS for the trace determination of clotrimazole in environmental water samples. J Sep Sci 36:2514–2521

    Article  CAS  Google Scholar 

  • Zheng H et al (2019) In vitro susceptibility of dematiaceous fungi to nine antifungal agents determined by two different methods. Mycoses 62:384–390

    Article  CAS  Google Scholar 

  • Zonios DI, Bennett JE (2008) Update on azole antifungals. Semin Respir Crit Care Med 29(2):198–210. https://doi.org/10.1055/s-2008-1063858

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Institute for Nanotechnology and Water Sustainability, UNISA, South Africa for funding. The first author is thankful to Addis Ababa University, Ethiopia, for granting him a study leave.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

HAA: Conceptualized, wrote the manuscript, and prepared all figures. All authors read, commented and approved the manuscript.

Corresponding author

Correspondence to Titus A. M. Msagati.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 160 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Assress, H.A., Selvarajan, R., Nyoni, H. et al. Antifungal azoles and azole resistance in the environment: current status and future perspectives—a review. Rev Environ Sci Biotechnol 20, 1011–1041 (2021). https://doi.org/10.1007/s11157-021-09594-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-021-09594-w

Keywords

Navigation