Skip to main content
Log in

Organic matter–microorganism–plant in soil bioremediation: a synergic approach

  • Review Paper
  • Published:
Reviews in Environmental Science and Bio/Technology Aims and scope Submit manuscript

Abstract

Bioremediation is a natural process, which relies on bacteria, fungi, and plants to degrade, break down, transform, and/or essentially remove contaminants, ensuring the conservation of the ecosystem biophysical properties. Since microorganisms are the former agents for the degradation of organic contaminants in soil, the application of organic matter (such as compost, sewage sludge, etc.), which increases microbial density and also provides nutrients and readily degradable organic matter (bioenhancement–bioaugmentation) can be considered useful to accelerate the contaminant degradation. Moreover, the organic matter addition, by means of the increase of cation exchange capacity, soil porosity and water-holding capacity, enhances the soil health and provides a medium satisfactory for microorganism activity. Plants have been also recently used in soil reclamation strategy both for their ability to uptake, transform, and store the contaminants, and to promote the degradation of organic contaminants by microbes at rhizosphere level. It is widely recognized that plant, through organic materials, nutrients and oxygen supply, produces a rich microenvironment capable of promoting microbial proliferation and activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbondanzi F, Cachada A, Campisi T, Guerra R, Raccagni M, Iacondini A (2003) Optimisation of a microbial bioassay for contaminated soil monitoring: bacterial inoculum standardisation and comparison with Microtox® assay. Chemosphere 53:889–897

    CAS  Google Scholar 

  • Adesodum JK, Mbagwu JSC (2008) Distribution of heavy metals and hydrocarbon contents in an alfisol contaminated with waste-lubricating oil amended with organic wastes. Bioresour Technol 99:3195–3204

    Google Scholar 

  • Adriano DC, Bollag J-M, Frankenberger WT Jr, Sims RC (1999) Biodegradation of contaminated soils. Agronomy monograph no. 37. American Society of Agronomy, Crop Science of America, Soil Science Society of America, Madison, p 772

    Google Scholar 

  • Afzal M, Yousaf S, Reichenauer TG, Kuffner M, Sessitsch A (2011) Soil type affects plant colonization, activity and catabolic gene expression of inoculated bacterial strains during phytoremediation of diesel. J Hazard Mater 186:1568–1575

    CAS  Google Scholar 

  • Afzal M, Yousaf S, Reichenauer TG, Sessitsch A (2012) The inoculation method affects colonization and performance of bacterial inoculant strains in the phytoremediation of soil contaminated with diesel oil. Int J Phytorem 14:35–47

    Google Scholar 

  • Al-Bachir M, Al-Adawi MA, Shamma M (2003) Synergetic effect of gamma irradiation and moisture content on decontamination of sewage sludge. Bioresour Technol 90:139–143

    CAS  Google Scholar 

  • Alkorta I, Hernandez-Allica J, Becerril JM, Amezaga I, Albizu I, Onaindia M, Garbisu C (2004) Chelate-enhanced phytoremediation of soils polluted with heavy metals. Rev Environ Sci Biotechnol 3:55–70

    CAS  Google Scholar 

  • Alloway BJ (1995) In: Alloway BJ (eds) Heavy metals in soils, 2nd edn. Blackie Academic & Professional an imprint of Chapman & Hall, pp 11–38

  • An L, Pan Y, Wang Z, Zhu C (2011) Heavy metal absorption status of five plant species in monoculture and intercropping. Plant Soil 345:237–245

    CAS  Google Scholar 

  • Anastasi A, Coppola T, Prigione V, Varese GC (2009) Pyrene degradation and detoxification in soil by a consortium of basidiomycetes isolated from compost: role of laccases and peroxidases. J Hazard Mater 165:1229–1233

    CAS  Google Scholar 

  • Anderson TA, Guthrie EA, Walton BT (1993) Bioremediation in the rhizosphere. Environ Sci Technol 27:2630–2636

    CAS  Google Scholar 

  • Andreoni V, Gianfreda L (2007) Bioremediation and monitoring of aromatic-polluted habitats. Appl Microbiol Biotechnol 76:287–308

    CAS  Google Scholar 

  • Angelova V, Ivanova R, Delibaltova V, Ivanov K (2004) Bio-accumulation and distribution of heavy metals in fibre crops (flax, cotton and hemp). Ind Crops Prod 19:197–205

    CAS  Google Scholar 

  • Aprill W, Sims RC (1990) Evaluation of the use of prairie grasses for stimulating polycyclic aromatic hydrocarbon treatment in soils. Chemosphere 20:253–265

    CAS  Google Scholar 

  • Archer MJG, Caldwell RA (2004) Response of six Australian plant species to heavy metal contamination at an abandoned mine site. Water Air Soil Pollut 157:257–267

    CAS  Google Scholar 

  • Atiyeh RM, Lee S, Edwards CA, Arancon NQ, Metzger JD (2002) The influence of humic acids derived from earthworm-processed organic wastes on plant growth. Bioresour Technol 84:7–14

    CAS  Google Scholar 

  • Atlas RM, Bartha R (1992) Hydrocarbon biodegradation and oil-spill bioremedition. Adv Microb Ecol 12:287–338

    CAS  Google Scholar 

  • Atlas RM, Bartha R (1998) Microbial ecology: fundamentals and applications. Benjamin/Cummings, Don Mills

    Google Scholar 

  • Barajas-Aceves M, Vera-Aguilar E, Bernal MP (2002) Carbon and nitrogen mineralization in soil amended with phenanthrene, anthracene and irradiated sewage sludge. Bioresour Technol 85:217–223

    CAS  Google Scholar 

  • Barea JM, Pozo MJ, Azcon R, Azcon-Aguilar C (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56:1761–1778

    CAS  Google Scholar 

  • Baudgrasset F, Baudgrasset S, Safferman SI (1993) Evaluation of the bioremediation of a contaminated soil with phytotoxicity tests. Chemosphere 26:1365–1374

    CAS  Google Scholar 

  • Baumann T, Muller S, Niessner R (2002) Migration of dissolved heavy metal compounds and PCP in the presence of colloids through a heterogeneous calcareous gravel and a homogeneous quartz sand—pilot scale experiments. Water Res 36:1213–1223

    CAS  Google Scholar 

  • Belyaeva ON, Haynes RJ, Birukova OA (2005) Barley yield and soil microbial and enzyme activities as affected by contamination of two soils with lead, zinc or copper. Biol Fertil Soils 41:85–94

    CAS  Google Scholar 

  • Bert V, Seuntjens P, Dejonghe W, Lacherez S, Thuy HTT, Vandecasteele B (2009) Phytoremediationas a management option for contaminatedsediments in tidalmarshes, flood control areas and dredgedsedimentlandfillsites. Environ Sci Pollut Res 16:745–764

    CAS  Google Scholar 

  • Bianchi V, Ceccanti B (2010) A three components system (TRIAS) in the phytoremediation of polluted environmental matrices. Toxicol Environ Chem 92:477–493

    CAS  Google Scholar 

  • Bianchi V, Masciandaro G, Ceccanti B, Doni S, Iannelli R (2010) Phytoremediation and bio-physical conditioning of dredged marine sediments for their re-use in the environment. Water Air Soil Pollut 210:187–195

    CAS  Google Scholar 

  • Bierkens J, Klein G, Corbisier P, Van Den Heuvel R, Verschaeve L, Weltens R, Schoeters G (1998) Comparative sensitivity of 20 bioassays for soil quality. Chemosphere 37:2935–2947

    CAS  Google Scholar 

  • Binet P, Portal J, Layval C (2000) Fate of polycyclic aromatic hydrocarbons in the rhizosphere and mycorrhizosphere of ryegrass. Plant Soil 227:207–213

    CAS  Google Scholar 

  • Bogan BW, Sullivan WR (2003) Physicochemical soil parameters affecting sequestration and mycobacterial biodegradation of polycyclic aromatic hydrocarbons in soil. Chemosphere 52:1717–1726

    CAS  Google Scholar 

  • Brito EMS, Guyoneaud R, Goni-Urriza M, Ranchou-Peyruse A, Verbaere A, Crapez MAC, Wasserman JCA, Duran R (2006) Characterization of hydrocarbonoclastic bacterial communities from mangrove sediments in Guanabara Bay, Brazil. Res Microbiol 157:752–762

    CAS  Google Scholar 

  • Campbell R (1985) Plant microbiology. Edward Arnold, Baltimore

    Google Scholar 

  • Cébron A, Norini MP, Beguiristain T, Leyval C (2008) Real-time PCR quantification of PAH-ring hydroxylating dioxygenase (PAH–RHDα) genes from gram positive and gram negative bacteria in soil and sediment samples. J Microbiol Methods 73:148–159

    Google Scholar 

  • Ceccanti B, Garcia C, Masciandaro G, Macci C, Doni S (2006) Soil Bioremediation: combination of earthworms and compost for the ecological remediation of a hydrocarbon polluted soil. Water Air Soil Pollut 177:383–397

    CAS  Google Scholar 

  • Chaney RL, Malik M, Li YM, Brown SL, Brewer EP, Angle JS, Baker AJM (1997) Phytoremediation of soil metals. Curr Opin Biotechnol 8:279–284

    CAS  Google Scholar 

  • Chehregani A, Noori M, Yazdi HL (2009) Phytoremediation of heavy-metal-polluted soils: screening for new accumulator plants in angouran mine (Iran) and evaluation of removal ability. Ecotoxicol Environ Saf 72:1349–1353

    CAS  Google Scholar 

  • Chen YC, Banks MK, Schwab AP (2003) Pyrene degradation in the rhizosphere of tall fescue (Festuca arundinacea) and switchgrass (Panicum virgatum L.). Environ Sci Technol 37:5778–5782

    CAS  Google Scholar 

  • Cheng KY, Wong JWC (2008) Fate of 14C–pyrene in soil–plant system amended with pig manure compostand Tween 80: a growth chamber study. Bioresour Technol 99:8406–8412

    CAS  Google Scholar 

  • Chi-Wen L, Shin-Yuan C, Ya-Wen C (2006) Effect of metals on biodegradation kinetics for methyl tert-butyl ether. Biochem Eng J 32:25–32

    Google Scholar 

  • Chuan MC, Shu GY, Liu JC (1996) Solubility of heavy metals in a contaminated soil: effects of redox potential and pH. Water Air Soil Pollut 91:543–556

    Google Scholar 

  • Clemente R, Bernal MP (2006) Fractionation of heavy metals and distribution of organic carbon in two contaminated soils amended with humic substances. Chemosphere 64:1264–1273

    CAS  Google Scholar 

  • Clemente R, Walker DJ, Roig A, Bernal MP (2003) Heavy metal bioavailability in a soil affected by mineral sulphides contamination following the mine spillage at Aznalcollar (Spain). Biodegradation 14:199–205

    CAS  Google Scholar 

  • Clemente R, Walker DJ, Bernal MP (2005) Uptake of heavy metals and As by Brassica juncea grown in a contaminated soil in Aznalcollar (Spain): the effect of soil amendments. Environ Pollut 138:46–58

    CAS  Google Scholar 

  • Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182

    CAS  Google Scholar 

  • Collins C, Laturnus F, Nepovim A (2002) Remediation of BTEX and trichloroethene: current knowledge with special emphasis on phytoremediation. Environ Sci Pollut Res 9:86–94

    CAS  Google Scholar 

  • Conte P, Zena A, Pilidis G, Piccolo A (2001) Increased retention of polycyclic aromatic hydrocarbons by soil treatment with humic substances. Environ Pollut 112:27–31

    CAS  Google Scholar 

  • Cunningham SD, Berti WR (1993) Remediation of contaminated soils with green plants: an overview. In Vitro Cell Dev Biol 29:207–212

    Google Scholar 

  • Cunningham SD, Anderson TA, Schwab AP, Hsu FC (1996) Phytoremediation of soils contaminated with organic pollutants. Adv Agron 56:55–71

    CAS  Google Scholar 

  • Dabkowska-Naskret H (2003) The role of organic matter in association with zinc in selected arable soils from Kujawy Region, Poland. Org Geochem 34:645–649

    CAS  Google Scholar 

  • de Carcer DA, Martin M, Mackova M, Macek T, Karlson U, Rivilla R (2007) The introduction of genetically modified microorganisms designed for rhizoremediation induces changes on native bacteria in the rhizosphere but not in the surrounding soil. ISME J 1:215–223

    Google Scholar 

  • Diwan H, Ahmad A, Iqbal M (2010) Uptake-related parameters as indices of phytoremediation potential. Biologia 65:1004–1011

    CAS  Google Scholar 

  • Dominguez MT, Marañón T, Murillo JM, Schulin R, Robinson BH (2008) Trace element accumulation in woody plants of the Guadiamar Valley, SW Spain: a large-scale phytomanagement case study. Environ Pollut 152:50–59

    CAS  Google Scholar 

  • Doni S, Macci C, Peruzzi E, Arenella M, Ceccanti B, Masciandaro G (2012) In situ phytoremediation of a soil historically contaminated by metals, hydrocarbons and polychlorobiphenyls. J Environ Monit 14:1383–1390

    CAS  Google Scholar 

  • Dorn PB, Salanitro JP (2000) Temporal ecological assessment of oil contaminated soils before and after bioremediation. Chemosphere 40:419–426

    CAS  Google Scholar 

  • Dorn PB, Vipond TE, Salanitro JP, Wisniewski HL (1998) Assessment of the acute toxicity of crudeoils using earthworms, Microtox, and plants. Chemosphere 37:845–860

    CAS  Google Scholar 

  • Dzantor EK (2007) Phytoremediation: the state of rhizosphere “engineering” for accelerated rhizodegradation of xenobiotic contaminants. J Chem Technol Biotechnol 82:228–232

    CAS  Google Scholar 

  • Farfel MR, Orlova AO, Chaney RL, Lees PSJ, Rohde C, Ashley P (2005) Biosolids compost amendment for reducing soil lead hazards: a pilot study in urban yards. Sci Total Environ 340:81–95

    CAS  Google Scholar 

  • Fava F, Piccolo A (2002) Effects of humic substances on the bioavailability and aerobic biodegradation of polychlorinated biphenyls in a model soil. Biotechnol Bioeng 77:204–211

    CAS  Google Scholar 

  • Fitz WJ, Wenzel WW (2002) Arsenic transformations in the soil–rhizosphere–plant system: fundamentals and potential application to phytoremediation. J Biotechnol 99:259–278

    CAS  Google Scholar 

  • Fletcher JS, Hegde RS (1995) Release of phenols by perennial plant roots and their potential importance in bioremediation. Chemosphere 31:3009–3016

    CAS  Google Scholar 

  • Fojta M, Fojtova M, Havran L, Pivonkova H, Dorcak V, Sestakova I (2006) Electrochemical monitoring of phytochelatin accumulation in nicotina tabacum cells exposed to sub-cytotoxic levels of cadmium. Anal Chim Acta 558:171–178

    CAS  Google Scholar 

  • Gadd GM (2004) Microbial influence on metal mobility and application for bioremediation. Geoderma 122:109–119

    CAS  Google Scholar 

  • Gallego JLR, Loredo J, Llamas JF, Vázquez F, Sánchez J (2001) Bioremediation of diesel-contaminated soils: evaluation of potential in situ techniques by study of bacterial degradation. Biodegradation 12:325–335

    CAS  Google Scholar 

  • Garcia C, Hernandez T, Costa F, Ceccanti B (1994) Biochemical parameters in soils regenerated by the addition of organic wastes. Waste Manag Res 12:457–466

    CAS  Google Scholar 

  • Garcia C, Moreno JL, Hernandez T, Costa F (1995) Effect of composting on sewage sludges contaminated with heavy metals. Bioresou Technol 53:13–19

    CAS  Google Scholar 

  • Geiselbrecht AG, Hedlund BP, Tichi MA, Staley JT (1998) Isolation of marine polycyclic aromatic hydrocarbon (PAH)-degrading Cycloclasticus strains from the Gulf of Mexico and comparison of their PAH degradation ability with that of Puget Sound Cycloclasticus strains. Appl Environ Microbiol 64:4703–4710

    CAS  Google Scholar 

  • Gevao B, Semple KT, Jones KC (2000) Bound pesticide residues in soils—a review. Environ Pollut 108:3–14

    CAS  Google Scholar 

  • Gibbs MH, Wicker LF, Stewart AJ (1996) A method for assessing sublethal effects of contaminants in soils to the earthworm Eisenia foetida. Environ Toxicol Chem 15:360–368

    CAS  Google Scholar 

  • Giller K, Witter E, McGrath S (1998) Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. Soil Biol Biochem 30:1398–1414

    Google Scholar 

  • Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28:367–374

    CAS  Google Scholar 

  • Gomes PC, Fontes PF, da Silva AG, Mendonca E, Netto AR (2001) Selectivity sequence and competitive adsorption of heavy metals by Brazilian soils. Soil Sci Soc Am J 65:1115–1121

    CAS  Google Scholar 

  • Gong P, Wilke BM, Strozzi E, Fleischmann S (2001) Evaluation and refinement of a continuous seed germination and early seedling growth test for the use in the ecotoxicological assessment of soils. Chemosphere 44:491–500

    CAS  Google Scholar 

  • Guala SD, Vega FA, Covelo EF (2011) Development of a model to select plants with optimum metal phytoextraction potential. Environ Sci Pollut Res 18:997–1003

    CAS  Google Scholar 

  • Gülser F, Erdoğan E (2008) The effects of heavy metal pollution on enzyme activities and basal soil respiration of roadside soils. Environ Monit Assess 145:127–133

    Google Scholar 

  • Gupta AK, Sinha S (2006) Chemical fractionation and heavy metal accumulation in the plant of Sesamum indicum (L.) var. T55 grown on soil amended with tannery sludge: selection of single extractants. Chemosphere 64:161–173

    CAS  Google Scholar 

  • Gupta AK, Sinha S (2007) Phytoextraction capacity of the Chenopodium album L. grown on soil amended with tannery sludge. Bioresour Technol 98:442–446

    CAS  Google Scholar 

  • Haderlein A, Legros R, Ramsay B (2001) Enhancing pyrene mineralization in contaminated soil by the addition of humic acids or composted contaminated soil. Appl Microbiol Biotechnol 56:555–559

    CAS  Google Scholar 

  • Hamdi H, Manusadzˇianas L, Aoyama I, Jedidi N (2006) Effects of anthracene, pyrene and benzo[a]pyrene spiking and sewage sludge compost amendment on soil ecotoxicity during a bioremediation process. Chemosphere 65:1153–1162

    CAS  Google Scholar 

  • Hamdi H, Benzarti S, Manusadzianas L, Aoyama I, Jedidi N (2007) Bioaugmentation and biostimulation effects on PAH dissipation and soil ecotoxicity under controlled conditions. Soil Biol Biochem 39:1926–1935

    CAS  Google Scholar 

  • Harris JA (2003) Measurements of the soil microbial community for estimating the success of restoration. Eur J Soil Sci 54:801–808

    Google Scholar 

  • Harter RD, Naidu R (1995) Role of metal–organic complexation in metal sorption by soils. Adv Agron 55:219–263

    CAS  Google Scholar 

  • Hatzinger PB, Alexander M (1995) Effect of ageing of chemicals in soil on their biodegradability and extractability. Environ Sci Technol 29:537–545

    CAS  Google Scholar 

  • Head IM, Swannell RP (1999) Bioremediation of petroleum hydrocarbon contaminants in habitats. Curr Opin Biotechnol 10:234–239

    CAS  Google Scholar 

  • Helmisaari HS, Salemaa M, Derome J, Kiikkila O, Uhlig C, Nieminen TM (2007) Remediation of heavy metal-contaminated forest soil using recycled organic matter and native woody plants. J Environ Qual 36:1145–1153

    CAS  Google Scholar 

  • Hubalek T, Vosahlova S, Mateju V, Kovacova N, Novotny C (2007) Ecotoxicity monitoring of hydrocarbon-contaminated soil during bioremediation: a case study. Arch Environ Contam Toxicol 52:1–7

    CAS  Google Scholar 

  • Ihra N, Slet J, Petersell V (2003) Effect of heavy metals and PAH on soil assessed via dehydrogenase assay. Environ Int 28:779–782

    Google Scholar 

  • Jabeen R, Ahmad A, Iqbal M (2009) Phytoremediation of heavy metals: physiological and molecular mechanisms. Bot Rev 75:339–364

    Google Scholar 

  • Johnsen AR, Wick LY, Harms H (2005) Principles of microbial PAH-degradation in soil. Environ Pollut 133:71–84

    CAS  Google Scholar 

  • Jùrgensen KS, Puustinen J, Suortti AM (2000) Bioremediation of petroleum hydrocarbon-contaminated soil by composting in biopiles. Environ Pollut 107:245–254

    Google Scholar 

  • Kagalkar AN, Jadhav MU, Bapat VA, Govindwar SP (2011) Phytodegradation of the triphenylmethanedye Malachite Green mediated by cellsuspension cultures of Blumeamalcolmii Hook. Bioresour Technol 102:10312–10318

    CAS  Google Scholar 

  • Kamath R, Schnoor JL, Alvarez P (2004) Effect of root-derived substrates on the expression of nah-lux genes in Pseudomonas fluorescens HK44: implications for biodegradation in the rhizosphere. Environ Sci Technol 38:1740–1745

    CAS  Google Scholar 

  • Ke L, Wong TWY, Wong AHY, Wong YS, Tam NFY (2003) Negative effects of humic acid addition on phytoremediation of pyrene-contaminated sediments by mangrove seedlings. Chemosphere 52:1581–1591

    CAS  Google Scholar 

  • Keddy CJ, Greene JC, Bonnell MA (1995) Review of wholeorganism bioassays: soil, freshwater sediment and freshwater assessment in Canada. Ecotoxicol Environ Saf 30:221–251

    CAS  Google Scholar 

  • Khan M, Scullion J (1999) Microbial activity in grassland soil amended with sewage sludge containing varying rates and combinations of Cu, Ni, and Zn. Biol Fertil Soils 30:202–209

    CAS  Google Scholar 

  • Kinniburgh D, Milne CJ, Benedetti M, Pinheiro J, Filius J, Koopal L, Vanriemsdijk W (1996) Metal ion binding by humic acid: application of the NICA-Donnan model. Environ Sci Technol 30:1687–1698

    CAS  Google Scholar 

  • Kollist-Siigur K, Nielsen T, Gron C, Hansen PE, Helweg C, Jonassen KEN, Jogensen O, Kiso U (2001) Sorption of polycyclic aromativ compounds to humic and fulvic acid HPLC column materials. J Environ Qual 30:526–537

    CAS  Google Scholar 

  • Krishna RR (2010) Technical challenges to in-situ remediation of polluted sites. Geotech Geol Eng 28:211–221

    Google Scholar 

  • Krishnamurti GSR, Naidu R (2008) Chemical speciation and bioavailability of trace metals. In: Violante A, Huang PM, Gadd GM (eds) Biophysico–chemical processes of heavy metals and metalloids in soil environments. Wiley Interscience, New York, pp 419–466

    Google Scholar 

  • Krishnamurti GSR, Pigna M, Arienzo M, Violante A (2007) Solid-phase speciation and phytoavailability of copper in a few representative soils of Italy. Chem Spec Bioav 19:57–67

    CAS  Google Scholar 

  • Kuiper I, Lagendijk EL, Bloemberg GV, Lugtenberg BJJ (2004) Rhizoremediation: a beneficial plant–microbe interaction. Mol Plant Microbe Interact 17:6–15

    CAS  Google Scholar 

  • Kulkarni PS, Crespo JG, Afonso CAM (2008) Dioxins sources and current remediation technologies—a review. Environ Int 34:139–153

    CAS  Google Scholar 

  • Kurola J, Salkinoja-Salonen M (2007) Potential for biodegradation of anthropogenic organic compounds at low temperature in boreals soils. Soil Biol Biochem 39:1206–1212

    CAS  Google Scholar 

  • Labud V, Garcia C, Hernandez T (2007) Effect of hydrocarbon pollution on the microbial properties of a sandy and a clay soil. Chemosphere 66:1863–1871

    CAS  Google Scholar 

  • Lair DA, Sawhney BL (2002) Reactions of pesticides with soil minerals. In: Dixon JB, Schulze DG (eds) Soil mineralogy with environmental applications. SSSA, Madison, pp 765–793

    Google Scholar 

  • Lair GJ, Gerzabek MH, Haberhauer G (2007) Sorption of heavy metals on organic and inorganic soil constituents. Environ Chem Lett 5:23–27

    CAS  Google Scholar 

  • Li G, Zhang F, Sun Y, Wong JWC, Fang M (2001) Chemical evaluation of sewage sludge composting as a mature indicator for composting process. Water Air Soil Pollut 132:333–345

    CAS  Google Scholar 

  • Liang Y, Britt DW, McLean JE, Sorensen DL, Sims RC (2007) Humic acid effect on pyrene degradation: finding an optimal range for pyrene solubility and mineralization enhancement. Appl Microbiol Biotechnol 74:1368–1375

    CAS  Google Scholar 

  • Lin Q, Wang ZW, Ma S, Cheng YX (2006) Evaluation of dissipation mechanisms by Lolium perenne L. and Raphanus sativus for pentachlorophenol (PCP) in copper co-contaminated soil. Sci Total Environ 368:814–822

    CAS  Google Scholar 

  • Linger P, Mussig J, Fischer H, Kobert J (2002) Industrial hemp (Cannabis sativa L.) growing on heavy metal contaminated soil: fibre quality and phytoremediation potential. Ind Crops Prod 16:33–42

    CAS  Google Scholar 

  • Liste HH, Alexander M (2000) Accumulation of phenanthrene and pyrene in rhizosphere soil. Chemosphere 40:11–14

    CAS  Google Scholar 

  • Liste H, Felgentreu D (2006) Crop growth, culturable bacteria, and degradation of petrol hydrocarbons (PHCs) in a long-term contaminated field soil. Appl Soil Ecol 31:43–52

    Google Scholar 

  • Liu XM, Wu JJ, Xu JM (2006) Characterizing the risk assessment of heavy metals and sampling uncertainty analysis in paddy field by geostatistics and GIS. Environ Pollut 141:257–264

    CAS  Google Scholar 

  • Loibner AP, Szolar OH, Braun R, Hirmann D (2004) Toxicity testing of 16 priority polycyclic aromatic hydrocarbons using Lumistox. Environ Toxicol Chem 23:557–564

    CAS  Google Scholar 

  • Luna-Guido ML, Dendooven L (2001) Simulating the dynamics of glucose and NH4+ in alkaline saline soils of the former Lake Texcoco with the Detran model. Eur J Soil Sci 52:269–277

    CAS  Google Scholar 

  • Macci C, Doni S, Peruzzi E, Ceccanti B, Masciandaro G (2012) Bioremediation of polluted soil through the combined application of plants, earthworms and organic matter. J Environ Monit 14:2710–2717

    CAS  Google Scholar 

  • Maeir RM, Pepper IL, Gerba PC (2000) A textbook of environmental microbiology. Academic Press, San Diego

    Google Scholar 

  • Maila MP, Cloete TE (2005) The use of biological activities to monitor the removal of fuel contaminants—perspective for monitoring hydrocarbon contamination: a review. Int Biodeterior Biodegrad 55:1–8

    CAS  Google Scholar 

  • Margesin R, Zimmerbauer A et al (1999) Soil lipase activity—a useful indicator of oil biodegradation. Biotechnol Tech 13:859–863

    CAS  Google Scholar 

  • McGrath SP, Zhao FJ, Lombi E (2001) Plant and rhizosphere processes involved in phytoremediation of metalcontaminated soils. Plant Soil 232:207–214

    CAS  Google Scholar 

  • Meagher RB (2000) Phytoremediation of toxic elemental and organic pollutants. Curr Opin Plant Biol 3:153–162

    CAS  Google Scholar 

  • Meers E, Tack FMG, Verloo MG (2008) Degradability of ethylenediaminedisuccinic acid (EDDS) in metal contaminated soils: implications for its use soil remediation. Chemosphere 70:358–363

    CAS  Google Scholar 

  • Megharaj M, Ramakrishnan B, Venkateswarlu K, Sethunathan N, Naidu R (2011) Bioremediation approaches for organicpollutants: a criticalperspective. Environ Int 37:1362–1375

    CAS  Google Scholar 

  • Meng L, Qiao M, Arp HPH (2010) Phytoremediationefficiency of a PAH-contaminated industrial soilusingryegrass, whiteclover, and celeryas mono- and mixed-cultures. J Soil Sediment 11:482–490

    Google Scholar 

  • Middaugh DP, Resnick SM, Lantz SE, Heard CS, Mueller JG (1993) Toxicological assessment of biodegraded pentachlorophenol: Microtox ® and fish embryos. Arch Environ Contam Toxicol 24:165–172

    CAS  Google Scholar 

  • Mille G, Almallah M, Bianchi M, van Wambeke F, Bertrand JC (1991) Effect of salinity on petroleum biodegradation. Fresenius J Anal Chem 339:788–791

    CAS  Google Scholar 

  • Miya RK, Firestone MK (2001) Enhanced phenanthrene biodegradation in soil by slender oat root exudates and root debris. J Environ Qual 30:1911–1918

    CAS  Google Scholar 

  • Mleczek M, Rutkowski P, Rissmann I, Kaczmarek Z, Golinski P, Szentner K, Strażyńska K et al (2010) Biomass productivity and phytoremediation potential of Salix alba and Salix viminalis. Biomass Bioenergy 34:1410–1418

    CAS  Google Scholar 

  • Moreels D, Bastiaens L, Ollevier F, Merckx R, Diels L, Springael D (2004) Evaluation of the intrinsic methyl tert–butyl ether (MTBE) biodegradation potential of hydrocarbon contaminated subsurface soils in batch microcosm systems. FEMS Microbiol Ecol 49:121–128

    CAS  Google Scholar 

  • Moreira ITA, Oliveira OMC, Triguis JA, dos Santos AMP, Queiroz AFS, Martins CMS, Silva CS et al (2011) Phytoremediation using Rizophoramangle L. in mangrove sediments contaminated by persistent total petroleum hydrocarbons (TPH’s). Microchem J 99:376–382

    CAS  Google Scholar 

  • Moreno B, Nogales R, Macci C, Masciandaro G, Benitez E (2011) Microbial eco-physiological profiles to estimate the biological restoration of a trichloroethylene-contaminated soil. Ecol Ind 11:1563–1571

    CAS  Google Scholar 

  • Mulligan CN, Yong RN, Gibbs BF (2001) Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Eng Geol 60:193–207

    Google Scholar 

  • Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reactionamplified genes encoding for 16S rRNA. Appl Environ Microbiol 59:695–700

    CAS  Google Scholar 

  • Namkoong W, Hwang EY, Park JS, Choi JY (2002) Bioremediation of dieselcontaminated soil with composting. Environ Pollut 119:23–31

    CAS  Google Scholar 

  • Nannipieri P, Kandeler E, Ruggiero P (2002) Enzyme activities and microbiological and biochemical processes in soil. In: Burns RG, Dick RP (eds) Enzymes in the environment: activity, ecology and applications. Marcel Dekker, New York, pp 1–33

    Google Scholar 

  • Nedunuri KV, Banks MK, Schwab AP, Chen Z (2000) Evaluation of phytoremediation for field scale degradation of total petroleum hydrocarbons. J Environ Eng 126:483–490

    CAS  Google Scholar 

  • Newman LA, Reynolds CM (2004) Phytodegradation of organic compounds. Curr Opin Biotechnol 15:225–230

    CAS  Google Scholar 

  • Newman LA, Strand SE, Choe N, Duffy J, Ekuan G, Pivetz BE (2001) Phytoremediation of contaminated soil and ground water at hazardous waste sites. EPA/540/S- 01/500

  • Nielsen S (2007) Helsinge sludge reed bed system: reduction of pathogenic microorganisms. Water Sci Technol 56:175–182

    CAS  Google Scholar 

  • Olaniran AO, Balgobind A, Pillay B (2011) Quantitative assessment of the toxic effects of heavy metals on 1,2-dichloroethane biodegradation in co-contaminated soil under aerobic condition. Chemosphere 85:839–847

    CAS  Google Scholar 

  • Oleszczuk P (2007) Investigation on potentially bioavailable and sequestrated forms of polycyclic aromatic hydrocarbons during sewage sludge composting. Chemosphere 70:288–297

    CAS  Google Scholar 

  • Olson PE, Reardon KF, Pilon-Smits EAH (2003) Ecology of rhizosphere bioremediation. In: McCutcheon SC, Schnoor JL (eds) Phytoremediation: transformation and control of contaminants. Wiley, Hoboken, pp 317–353

    Google Scholar 

  • Padmavathiamma PK, Li LY (2007) Phytoremediation technology: hyper-accumulationmetals in plants. Water Air Soil Pollut 184:105–126

    CAS  Google Scholar 

  • Park JH, Zhao X, Voice TC (2001) Biodegradation of non-desorbable naphthalene in soils. Environ Sci Technol 35:2734–2740

    CAS  Google Scholar 

  • Pérez de Mora A, Madejón E, Burgos P, Cabrera F (2006) Trace element availability and plant growth in a mine-spill contaminated soil under assisted natural remediation I. Soil Sci Total Environ 363:28–37

    Google Scholar 

  • Peruzzi E, Masciandaro G, Macci C, Doni S, Ceccanti B (2011) Pollutant monitoring in sludge treatment wetlands. Water Sci Technol 64:1558–1565

    CAS  Google Scholar 

  • Phillips TM, Liu D, Seech AG, Lee H, Trevors JT (2000) Monitoring bioremediation in creosote-contaminated soils using chemical analysis and toxicity tests. J Ind Microbiol Biotechnol 24:132–139

    CAS  Google Scholar 

  • Piccolo A, Pietramellara G, Mbagwu JSC (1997) Use of humic substances as soil conditioners to increase aggregate stability. Geoderma 75:267–277

    CAS  Google Scholar 

  • Plaza C, Xing B, Fernández JM, Senesi N, Polo A (2009) Binding of polycyclic aromatic hydrocarbons by humic acids formed during composting. Environ Pollut 157:257–263

    CAS  Google Scholar 

  • Płaza G, Nałecz-Jawecki G, Ulfig K, Brigmon RL (2005) The application of bioassays as indicators of petroleum-contaminated soil remediation. Chemosphere 59:289–296

    Google Scholar 

  • Puglisi E, Cappa F, Fragoulis G, Trevisan M, Del Re AAM (2007) Bioavailability and degradation of phenanthrene in compost amended soil. Chemosphere 67:548–556

    CAS  Google Scholar 

  • Pulford I (2003) Phytoremediation of heavy metal-contaminated land by trees—a review. Environ Int 29:529–540

    CAS  Google Scholar 

  • Ramirez WA, Domene X, Andres P, Alcaniz JM (2008) Phytotoxic effects of sewage sludge extracts on the germination of three plant species. Ecotoxicology 17:834–844

    Google Scholar 

  • Ramirez-Fuentes E, Lucho-Constantino C, Escamilla-Silva E, Dendooven L (2002) Characteristics, and carbon and nitrogen dynamics in soil irrigated with wastewater for different lengths of time. Bioresour Technol 85:179–187

    CAS  Google Scholar 

  • Raskin I, Kumar PBAN, Dushenkov S, Salt DE (1994) Bioconcentration of heavy metals by plants. Curr Opin Biotechnol 5:285–290

    CAS  Google Scholar 

  • Raskin I, Smith RD, Salt DE (1997) Phytoremediation of metals: using plants to remove pollutants from the environment. Curr Opin Biotechnol 8:221–226

    CAS  Google Scholar 

  • Reid BJ, Jones KC, Semple KT (2000) Bioavailability of persistent organic pollutants in soils and sediments—a perspective on mechanisms, consequences and assessment. Environ Pollut 108:103–112

    CAS  Google Scholar 

  • Renella G, Mench M, Gelsomino A, Landi L, Nannipieri P (2005) Functional activity and microbial community structure in soils amended with bimetallic sludges. Soil Biol Biochem 37:1498–1506

    CAS  Google Scholar 

  • Rhykerd RL, Weaver RW, McInnes KJ (1995) Influence of salinity on bioremediation of oil in soil. Environ Pollut 90:127–130

    CAS  Google Scholar 

  • Robinson SL, Novak JT, Widdowson MA, Crosswell SB, Fetteroll GJ (2003) Field and laboratory evaluation of the impact of tall fescue on polyaromatic hydrocarbon degradation in an aged creosote-contaminated surface soil. J Environ Eng 129:232–240

    CAS  Google Scholar 

  • Ros M, Pascual JA, Garcia C, Hernandez MT, Insam H (2006) Hydrolase activities, microbial biomass and bacterial community in a soil after long-term amendment with different composts. Soil Biol Biochem 38:3443–3452

    CAS  Google Scholar 

  • Ros M, Garcia C, Hernandez MT, Lacasa A, Fernandez P, Pascual JA (2008) Effects of biosolarization as methyl bromide alternative for Meloidogyne incognita control on quality of soil under pepper. Biol Fertil Soil 45:37–44

    Google Scholar 

  • Ros M, Rodríguez I, García C, Hernández TM (2010) Microbial communities involved in the bioremediation of an aged recalcitrant hydrocarbon polluted soil by using organic amendments. Bioresour Technol 101:6916–6923

    CAS  Google Scholar 

  • Rosenberg E, Ron EZ (1996) Bioremediation of petroleum contamination. In: Crawford RL, Crawford DL (eds) Bioremediation: principles and applications. Cambridge University Press, Cambridge, pp 100–125

    Google Scholar 

  • Salt DE, Blaylock M, Kumar PBAN, Dushenkov V, Ensley BD, Chet L, Raskin L (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology 13:468–474

    CAS  Google Scholar 

  • Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49:643–668

    CAS  Google Scholar 

  • Sartoros C, Yerushalmi L, Béron P, Guiot SR (2005) Effects of surfactant and temperature on biotransformation kinetics of anthracene and pyrene. Chemosphere 61:1042–1050

    CAS  Google Scholar 

  • Saterbak A, Toy RJ, Wong DCL, McMain BJ, Williams MP, Dorn PB, Brzuzy LP, Chai EY, Salanitro JP (1999) Ecotoxicological and analytical assessment of hydrocarbon-contaminated soils and application to ecological risk assessment. Environ Toxicol Chem 18:1591–1607

    CAS  Google Scholar 

  • Saterbak A, Toy RJ, McMain BJ, Williams MP, Dorn PB (2000) Ecotoxicological and analytical assessment of effects of bioremediation on hydrocarbon-containing soils. Environ Toxicol Chem 19:2643–2652

    CAS  Google Scholar 

  • Sauve S, Hendershot W, Allen HE (2000) Solid-solution partitioning of metals in contaminated soils: dependence on pH, total metal burden and organic matter. Environ Sci Technol 34:1125–1131

    CAS  Google Scholar 

  • Scullion J, Malik A (2000) Earthworm activity affecting organic matter, aggregation and microbial activity in soils restored after opencast mining for coal. Soil Biol Biochem 32:119–126

    CAS  Google Scholar 

  • Semple KT, Reid BJ, Fermor TR (2001) Review: impact of composting strategies on the treatment of soils contaminated with organic pollutants. Environ Pollut 112:269–283

    CAS  Google Scholar 

  • Semple KT, Morriss AWJ, Paton GI (2003) Bioavailability of hydrophobic organic contaminants in soils: fundamental concepts and techniques for analysis. Eur J Soil Sci 54:809–818

    CAS  Google Scholar 

  • Semple KT, Doick KJ, Wick LY, Harms H (2007) Microbial interactions with organic contaminants in soil: definitions, processes and measurement. Environ Pollut 150:166–176

    CAS  Google Scholar 

  • Senesi N, Plaza C (2007) Role of humification processes in recycling organic wastes of various nature and sources as soil amendments. Clean Soil Air Water 35:26–41

    CAS  Google Scholar 

  • Seok-Whan K, Young-Bum K, Jae-Dong S, Eun-Ki K (2010) Enhanced biodegradation of hydrocarbons in soil by microbial biosurfactant, sophorolipid. Appl Biochem Biotechnol 160:780–790

    Google Scholar 

  • Shukor MY, Dahalan FA, Jusoh AZ, Muse R, Shamaan NA, Syed MA (2009) Characterization of a diesel-degrading strain isolated from a hydrocarbon-contaminated site. J Environ Biol 30:145–150

    CAS  Google Scholar 

  • Siciliano SD, Germida JJ, Banks MK, Greer CW (2003) Changes in microbial community composition and function during a polyaromatic hydrocarbon phytoremediation field trial. Appl Environ Microbiol 69:483–489

    CAS  Google Scholar 

  • Siddiqui S, Adams WA, Scullion J (2001) The phytotoxicity and degradation of diesel hydrocarbons in soil. J Plant Nutr Soil Sci 164:631–635

    CAS  Google Scholar 

  • Singh S, Saxena R, Pandey K, Bhatt K, Sinha S (2004a) Response of antioxidants in sunflower (Helianthus annuus L.) grown on different amendments of tannery sludge: its metal accumulation potential. Chemosphere 57:1663–1673

    CAS  Google Scholar 

  • Singh S, Sinha S, Saxena R, Pandey K, Bhatt K (2004b) Translocation of metals and its effects in the tomato plants grown on various amendment of tannery wastes: evidence for involvement of antioxidants. Chemosphere 57:91–99

    CAS  Google Scholar 

  • Six J, Feller C, Denef K, Ogle SM, de Morales JC, Albrecht A (2002) Soil organic matter, biota and aggregation in temperate and tropical soils: effects of no-tillage. Agronomie 22:755–775

    Google Scholar 

  • Smith KE, Thullner M, Wick LY, Harms H (2009) Sorption to humic acids enhances polycyclic aromatic hydrocarbon biodegradation. Environ Sci Technol 43:7205–7211

    CAS  Google Scholar 

  • Stevens JL, Northcott GL, Stern GA, Tomy G, Jones KC (2003) PAHs, PCBs, PCNs, organochlorine pesticides, synthetic musks and polychlorinated n-alkanes in UK sewage sludge, survey results and implications. Environ Sci Technol 37:462–467

    CAS  Google Scholar 

  • Stevenson FJ, Fitch A (1986) Chemistry of complexation of metal ions with soil solution organics. In: Huang PM, Schnitzer M (eds) Interactions of soil minerals with natural organics and microbes. Soil Science Society of America, Madison, pp 29–58

    Google Scholar 

  • Stokes JD, Paton GI, Semple KT (2006) Behavior and assessment of bioavailability of organic contaminants in soil: relevance for risk assessment and remediation. Soil Use Manag 21:475–486

    Google Scholar 

  • Supalkova V, Huska D, Diopan V, Hanustiak P, Zitka O, Stejskal K, Baloun J, Pikula J, Havel L, Zehnalek J, Adam V, Trnkova L, Beklova M, Kizek R (2007) Electroanalysis of plant thiols. Sensors 7:932–959

    CAS  Google Scholar 

  • Tejada M, Gonzalez JL, Hernandez MT, Garcia C (2008) Application of different organic amendments in a gasoline contaminated soil: effect on soil microbial properties. Bioresour Technol 99:2872–2880

    CAS  Google Scholar 

  • Trapp S, Kohler A, Larsen LC, Zambrano KC, Karlson U (2005) Phytotoxicity of fresh and weathered diesel and gasoline to willow and poplar trees. J Soils Sediment 1:71–76

    Google Scholar 

  • Treves DS, Xia B, Zhou J, Tiedje JM (2003) A two-species test of the hypothesis that spatial isolation influences microbial diversity in soil. Microb Ecol 45:20–28

    CAS  Google Scholar 

  • Trevors JT (1984) Dehydrogenase activity in soil: a comparison between the INT and TTC assay. Soil Biol Biochem 16:673–674

    CAS  Google Scholar 

  • Tu C, Teng Y, Luo Y, Sun X, Deng S, Li Z, Liu W, Xu Z (2011) PCB removal, soil enzyme activities, and microbialcommunitystructuresduring the phytoremediation by alfalfa in field soils. J Soils Sediment 11:649–656

    CAS  Google Scholar 

  • Turnau K, Jurkiewicz A, Lingua G, Barea JM, Gianinazzi-Pearson V (2005) Role of arbuscular mycorrhiza and associated microorganisms in phytoremediation of heavy metal-polluted sites. In: Prasad MNV, Sajwan KS, Naidu R (eds) Trace elements in the environment. CRC Press, Boca Raton, pp 229–246

    Google Scholar 

  • Ulrich AC, Guigard SE, Foght JM, Semple KM, Pooley K, Armstrong JE, Biggar KW (2009) Effect of salt on aerobic biodegradation of petroleum hydrocarbons in contaminated groundwater. Biodegradation 20:27–38

    CAS  Google Scholar 

  • US EPA (2000) Environmental Protection Agency. Introduction to phytoremediation. EPA/600/R-99/107

  • US EPA (2006) United States Environmental Protection Agency. Landfarming. 9 March 2006. 24 Nov 2006 http://www.epa.gov/oust/cat/landfarm.htm.Verified 15 Dec 2006

  • Uyttebroek M, Vermeir S, Wattiau P, Ryngaert A, Springael D (2007) Characterization of cultures enriched from acidic polycyclic aromatic hydrocarbon-contaminated soil for growth on pyrene at low pH. Appl Environ Microbiol 73:3159–3164

    CAS  Google Scholar 

  • Vaca-Paulín R, Esteller-Alberich MV, Lugo-De La Fuente J, Zavaleta-Mancera HA (2006) Effect of sewage sludge or compost on the sorption and distribution of copper and cadmium in soil. Waste Manag (Oxf) 26:71–81

    Google Scholar 

  • Vacca DJ, Bleam WF, Hickey WJ (2005) Isolation of soil bacteria adapted to degrade humic acid-sorbed phenanthrene. Appl Environ Microbiol 71:3797–3805

    CAS  Google Scholar 

  • Van Stempvoort DR, Lesage S, Novakowski KS, Millar K, Brown S, Lawrence JR (2002) Humic acid enhanced remediation of an emplaced diesel source in groundwater. 1. Laboratory-based pilot scale test. J Contam Hydrol 54:249–276

    Google Scholar 

  • Van Straalen NM, Van Gestel CAM (1993) Soil invertebrates and micro-organisms. In: Calow P (ed) Handbook of ecotoxicology. Blackwell Science, Oxford, pp 251–277

    Google Scholar 

  • Vega-Jarquin C, Dendooven L, Magana-Plaza L, Thalasso F, Ramos-Valdivia A (2001) Biotransformation of hydrocarbon by cells cultures of Cinchoma robusta and Dioscorea composite. Environ Toxicol Chem 20:2670–2675

    CAS  Google Scholar 

  • Vervaeke P, Luyssaert S, Mertens J, Meers E, Tack FMG, Lust N (2003) Phytoremediation prospects of willow stands on contaminated sediment: a field trial. Environ Pollut 126:275–282

    CAS  Google Scholar 

  • Vivas A, Moreno B, del Val C, Macci C, Masciandaro G, Benitez E (2008) Metabolic and bacterial diversity in soils historically contaminated by heavy metals and hydrocarbons. J Environ Monit 10:1287–1296

    CAS  Google Scholar 

  • Wahle U, Kördel W (1997) Developement of analytical methods for the assessment of ecotoxicological relevant soil contamination. Part A. Development and improvement of soil extraction methods for the determination of the bioavailable parts of contaminants. Chemosphere 35:223–237

    CAS  Google Scholar 

  • Walker DJ, Clemente R, Bernal MP (2004) Contrasting effects of manure and compost on soil pH, heavy metal availability and growth of Chenopodium album L. in a soil contaminated by pyritic mine waste. Chemosphere 57:215–224

    CAS  Google Scholar 

  • Wang GD, Chen XY (2007) Detoxification of soil phenolic pollutants by plant secretory enzyme, phytoremedation. Humana Press, Totowa, pp 49–57

    Google Scholar 

  • Weber R (2007) Relevance of PCDD/PCDF formation for the evaluation of POPs destruction technologies—review on current status and assessment gaps. Chemosphere 67:109–117

    Google Scholar 

  • Wenzel WW, Lombi E, Adriano DC (2004) Root and rhizosphere processes in metal hyperaccumulation and phytoremediation technology. In: Prasad MNV (ed) Heavy metals in plants: from biomolecules to ecosystems. Springer, Berlin, pp 313–344

    Google Scholar 

  • White PM, Wolf DC, Thoma GJ, Reynolds CM (2006) Phytoremediation of alkylated polycyclic aromatic hydrocarbons in a crude oil-contaminated soil. Water Air Soil Pollut 169:207–220

    CAS  Google Scholar 

  • Wick LY, Remer R, Würz B, Reichenbach J, Braun S, Schäfer F, Harms H (2007) Effect of fungal hyphae on the access of bacteria to phenanthrene in soil. Environ Sci Technol 41:500–505

    CAS  Google Scholar 

  • Widada J, Nojiri H, Omori T (2002) Recent developments in molecular techniques for identification and monitoring of xenobiotic-degrading bacteria and their catabolic genes in bioremediation. Appl Microbiol Biotechnol 60:45–59

    CAS  Google Scholar 

  • Wiltse CC, Rooney WL, Chen Z, Schwab AP, Banks MK (1998) Greenhouse evaluation of agronomic and crude oil-phytoremediation potential among alfalfa genotypes. J Environ Qual 27:169–173

    CAS  Google Scholar 

  • Yadav SK, Juwarkar AA, Kumar GP, Thawale PR, Singh SK, Chakrabarti T (2009) Bioaccumulation and phyto-translocation of arsenic, chromium and zinc by Jatropha curcas L.: impact of dairy sludge and biofertilizer. Bioresour Technol 100:4616–4622

    CAS  Google Scholar 

  • Yu SY, Chen YX, Wu WX, Wang KX, Lin Q, Liang XQ (2006) Enhanced dissipation of phenanthrene and pyrene in spiked soils by combined plants cultivation. Sci Total Environ 363:206–215

    Google Scholar 

  • Zhang XL, Tao S, Liu WX, Yang Y, Zuo Q, Liu SZ (2005) Source diagnostics of polycyclic aromatic hydrocarbons based on species ratios: a multimedia approach. Environ Sci Technol 39:9109–9114

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Doni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masciandaro, G., Macci, C., Peruzzi, E. et al. Organic matter–microorganism–plant in soil bioremediation: a synergic approach. Rev Environ Sci Biotechnol 12, 399–419 (2013). https://doi.org/10.1007/s11157-013-9313-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-013-9313-3

Keywords

Navigation