Skip to main content

Advertisement

Log in

A systematic review of resting-state functional connectivity in obesity: Refining current neurobiological frameworks and methodological considerations moving forward

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

Obesity is the second most common cause of preventable morbidity worldwide. Resting-state functional magnetic resonance imaging (fMRI) has been used extensively to characterise altered communication between brain regions in individuals with obesity, though findings from this research have not yet been systematically evaluated within the context of prominent neurobiological frameworks. This systematic review aggregated resting-state fMRI findings in individuals with obesity and evaluated the contribution of these findings to current neurobiological models. Findings were considered in relation to a triadic model of problematic eating, outlining disrupted communication between reward, inhibitory, and homeostatic systems. We identified a pattern of consistently increased orbitofrontal and decreased insula cortex resting-state functional connectivity in individuals with obesity in comparison to healthy weight controls. BOLD signal amplitude was also increased in people with obesity across studies, predominantly confined to subcortical regions, including the hippocampus, amygdala, and putamen. We posit that altered orbitofrontal cortex connectivity may be indicative of a shift in the valuation of food-based rewards and that dysfunctional insula connectivity likely contributes to altered homeostatic signal processing. Homeostatic violation signals in obesity may be maintained despite satiety, thereby ‘hijacking’ the executive system and promoting further food intake. Moving forward, we provide a roadmap for more reliable resting-state and task-based functional connectivity experiments, which must be reconciled within a common framework if we are to uncover the interplay between psychological and biological factors within current theoretical frameworks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and material

Raw data can be made available upon request.

Code availability

A MATLAB file containing analyses steps can be made available upon request.

Abbreviations

AAL:

Automatic Anatomical Labelling

ALFF:

Amplitude of Low Frequency Fluctuation

BMI:

Body Mass Index

BOLD:

Blood Oxygenated Level Dependency

DEBQ:

Dutch Eating Behaviour Questionnaire

dlPFC:

Dorsolateral Prefrontal Cortex

DMN:

Default Mode Network

FC:

Functional Connectivity

fMRI:

Functional Magnetic Resonance Imaging

FPN:

Frontoparietal Network

BES:

Binge Eating Scale

HADS:

Hospital Anxiety and Depression Scale

ICA:

Independent Component Analysis

MNI:

Montreal Neurological Institute

OFC:

Orbitofrontal Cortex

PRISMA:

Preferred Reporting Items for Systematic Reviews and Meta-Analyses

ROI:

Region of Interest

SN:

Salience Network

SPSRQ:

The Sensitivity to Punishment and Sensitivity to Reward Questionnaire

YFAS:

Yale Food Addiction Scale

References

  1. Val-Laillet D, Aarts E, Weber B, Ferrari M, Quaresima V, Stoeckel LE, Alonso-Alonso M, Audette M, Malbert C-H, Stice E. Neuroimaging and neuromodulation approaches to study eating behavior and prevent and treat eating disorders and obesity. NeuroImage Clin. 2015;8:1–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Volkow ND, Wang G-J, Baler RD. Reward, dopamine and the control of food intake: implications for obesity. Trends Cogn Sci. 2011;15:37–46.

    Article  CAS  PubMed  Google Scholar 

  3. Steward T, Miranda-Olivos R, Soriano-Mas C, Fernández-Aranda F. Neuroendocrinological mechanisms underlying impulsive and compulsive behaviors in obesity: a narrative review of fMRI studies. Rev Endocr Metab Disord. 2019;20:263–72.

    Article  PubMed  Google Scholar 

  4. Makaronidis JM, Batterham RL. Obesity, body weight regulation and the brain: insights from fMRI. Br J Radiol. 2018;91:20170910.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Berthoud H-R. Multiple neural systems controlling food intake and body weight. Neurosci Biobehav Rev. 2002;26:393–428.

    Article  PubMed  Google Scholar 

  6. Stoeckel LE, Birch LL, Heatherton T, Mann T, Hunter C, Czajkowski S, Onken L, Berger PK, Savage CR. Psychological and neural contributions to appetite self-regulation. Obesity. 2017;25:S17–25.

    Article  PubMed  Google Scholar 

  7. Bechara A. Decision making, impulse control and loss of willpower to resist drugs: a neurocognitive perspective. Nat Neurosci. 2005;8:1458–63.

    Article  CAS  PubMed  Google Scholar 

  8. Bickel WK, Miller ML, Yi R, Kowal BP, Lindquist DM, Pitcock JA. Behavioral and neuroeconomics of drug addiction: competing neural systems and temporal discounting processes. Drug Alcohol Depend. 2007;90:S85–91.

    Article  PubMed  Google Scholar 

  9. He Q, Turel O, Bechara A. Brain anatomy alterations associated with Social Networking Site (SNS) addiction. Sci Rep. 2017;7:1–8.

    CAS  Google Scholar 

  10. He Q, Turel O, Brevers D, Bechara A. Excess social media use in normal populations is associated with amygdala-striatal but not with prefrontal morphology. Psychiatry Res Neuroimaging. 2017;269:31–5.

    Article  PubMed  Google Scholar 

  11. Turel O, He Q, Xue G, Xiao L, Bechara A. Examination of neural systems sub-serving Facebook “addiction.” Psychol Rep. 2014;115:675–95.

    Article  PubMed  Google Scholar 

  12. Batterink L, Yokum S, Stice E. Body mass correlates inversely with inhibitory control in response to food among adolescent girls: an fMRI study. Neuroimage. 2010;52:1696–703.

    Article  PubMed  Google Scholar 

  13. Bruce AS, Holsen LM, Chambers RJ, Martin LE, Brooks WM, Zarcone JR, Butler MG, Savage CR. Obese children show hyperactivation to food pictures in brain networks linked to motivation, reward and cognitive control. Int J Obes. 2010;34:1494–500.

    Article  CAS  Google Scholar 

  14. Zeeb FD, Floresco SB, Winstanley CA. Contributions of the orbitofrontal cortex to impulsive choice: interactions with basal levels of impulsivity, dopamine signalling, and reward-related cues. Psychopharmacology. 2010;211:87–98.

    Article  CAS  PubMed  Google Scholar 

  15. Fineberg NA, Potenza MN, Chamberlain SR, Berlin HA, Menzies L, Bechara A, Sahakian BJ, Robbins TW, Bullmore ET, Hollander E. Probing compulsive and impulsive behaviors, from animal models to endophenotypes: a narrative review. Neuropsychopharmacology. 2010;35:591–604.

    Article  PubMed  Google Scholar 

  16. Rolls ET. The orbitofrontal cortex and reward. Cereb Cortex. 2000;10:284–94.

    Article  CAS  PubMed  Google Scholar 

  17. McClure SM, Laibson DI, Loewenstein G, Cohen JD. Separate neural systems value immediate and delayed monetary rewards. Science. 2004;306:503–7.

    Article  CAS  PubMed  Google Scholar 

  18. Weygandt M, Mai K, Dommes E, Ritter K, Leupelt V, Spranger J, Haynes J-D. Impulse control in the dorsolateral prefrontal cortex counteracts post-diet weight regain in obesity. Neuroimage. 2015;109:318–27.

    Article  PubMed  Google Scholar 

  19. Miranda-Olivos R, Steward T, Martínez-Zalacaín I, et al. The neural correlates of delay discounting in obesity and binge eating disorder. J Behav Addict. 2021. https://doi.org/10.1556/2006.2021.00023.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Chen R, Li DP, Turel O, Sørensen TA, Bechara A, Li Y, He Q. Decision making deficits in relation to food cues influence obesity: a triadic neural model of problematic eating. Front Psychiatry. 2018;9:264.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Brennan AM, Mantzoros CS. Drug Insight: the role of leptin in human physiology and pathophysiology—emerging clinical applications. Nat Clin Pract Endocrinol Metab. 2006;2:318–27.

    Article  CAS  PubMed  Google Scholar 

  22. Bouret S, Levin BE, Ozanne SE. Gene-environment interactions controlling energy and glucose homeostasis and the developmental origins of obesity. Physiol Rev. 2015;95:47–82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Berthoud H-R, Münzberg H, Morrison CD. Blaming the brain for obesity: integration of hedonic and homeostatic mechanisms. Gastroenterology. 2017;152:1728–38.

    Article  PubMed  Google Scholar 

  24. Cameron JD, Chaput J-P, Sjödin AM, Goldfield GS. Brain on fire: Incentive salience, hedonic hot spots, dopamine, obesity, and other hunger games. Annu Rev Nutr. 2017;37:183–205.

    Article  CAS  PubMed  Google Scholar 

  25. Castro DC, Cole SL, Berridge KC. Lateral hypothalamus, nucleus accumbens, and ventral pallidum roles in eating and hunger: interactions between homeostatic and reward circuitry. Front Syst Neurosci. 2015;9:90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Simmons WK, Rapuano KM, Kallman SJ, Ingeholm JE, Miller B, Gotts SJ, Avery JA, Hall KD, Martin A. Category-specific integration of homeostatic signals in caudal but not rostral human insula. Nat Neurosci. 2013;16:1551–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bickel WK, Snider SE, Quisenberry AJ, Stein JS, Hanlon CA. Competing neurobehavioral decision systems theory of cocaine addiction: From mechanisms to therapeutic opportunities. In: Prog. Brain Res. Elsevier 2016;269–293.

  28. Jentsch JD, Taylor JR. Impulsivity resulting from frontostriatal dysfunction in drug abuse: implications for the control of behavior by reward-related stimuli. Psychopharmacology. 1999;146:373–90.

    Article  CAS  PubMed  Google Scholar 

  29. Wijngaarden MA, Veer IM, Rombouts S, Van Buchem MA, Van Dijk KW, Pijl H, Van Der Grond J. Obesity is marked by distinct functional connectivity in brain networks involved in food reward and salience. Behav Brain Res. 2015;287:127–34.

    Article  CAS  PubMed  Google Scholar 

  30. Olivo G, Zhou W, Sundbom M, Zhukovsky C, Hogenkamp P, Nikontovic L, Stark J, Wiemerslage L, Larsson E-M, Benedict C. Resting-state brain connectivity changes in obese women after Roux-en-Y gastric bypass surgery: a longitudinal study. Sci Rep. 2017;7:1–11.

    Article  CAS  Google Scholar 

  31. Beyer F, Kharabian Masouleh S, Huntenburg JM, Lampe L, Luck T, Riedel-Heller SG, Loeffler M, Schroeter ML, Stumvoll M, Villringer A. Higher body mass index is associated with reduced posterior default mode connectivity in older adults. Hum Brain Mapp. 2017;38:3502–15.

    PubMed  PubMed Central  Google Scholar 

  32. Kullmann S, Heni M, Linder K, Zipfel S, Häring H-U, Veit R, Fritsche A, Preissl H. Resting-state functional connectivity of the human hypothalamus. Hum Brain Mapp. 2014;35:6088–96.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Doucet GE, Rasgon N, McEwen BS, Micali N, Frangou S. Elevated body mass index is associated with increased integration and reduced cohesion of sensory-driven and internally guided resting-state functional brain networks. Cereb Cortex. 2018;28:988–97.

    Article  PubMed  Google Scholar 

  34. García-García I, Jurado MÁ, Garolera M, Segura B, Sala-Llonch R, Marqués-Iturria I, Pueyo R, Sender-Palacios MJ, Vernet-Vernet M, Narberhaus A. Alterations of the salience network in obesity: a resting-state fMRI study. Hum Brain Mapp. 2013;34:2786–97.

    Article  PubMed  Google Scholar 

  35. Kullmann S, Heni M, Veit R, Ketterer C, Schick F, Häring H-U, Fritsche A, Preissl H. The obese brain: association of body mass index and insulin sensitivity with resting state network functional connectivity. Hum Brain Mapp. 2012;33:1052–61.

    Article  PubMed  Google Scholar 

  36. Tregellas JR, Wylie KP, Rojas DC, Tanabe J, Martin J, Kronberg E, Cordes D, Cornier M-A. Altered default network activity in obesity. Obesity. 2011;19:2316–21.

    Article  PubMed  Google Scholar 

  37. McFadden KL, Cornier M-A, Melanson EL, Bechtell JL, Tregellas JR. Effects of exercise on resting-state default mode and salience network activity in overweight/obese adults. NeuroReport. 2013;24:866.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Black WR, Lepping RJ, Bruce AS, Powell JN, Bruce JM, Martin LE, Davis AM, Brooks WM, Savage CR, Simmons WK. Tonic hyper-connectivity of reward neurocircuitry in obese children. Obesity. 2014;22:1590–3.

    Article  PubMed  Google Scholar 

  39. Hogenkamp PS, Zhou W, Dahlberg LS, Stark J, Larsen AL, Olivo G, Wiemerslage L, Larsson E-M, Sundbom M, Benedict C. Higher resting-state activity in reward-related brain circuits in obese versus normal-weight females independent of food intake. Int J Obes. 2016;40:1687–92.

    Article  CAS  Google Scholar 

  40. Golestani AM, Kwinta JB, Khatamian YB, Chen JJ. The effect of low-frequency physiological correction on the reproducibility and specificity of resting-state fMRI metrics: functional connectivity, ALFF, and ReHo. Front Neurosci. 2017;11:546.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Zang Y-F, He Y, Zhu C-Z, Cao Q-J, Sui M-Q, Liang M, Tian L-X, Jiang T-Z, Wang Y-F. Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain Dev. 2007;29:83–91.

    Article  PubMed  Google Scholar 

  42. Di X, Kannurpatti SS, Rypma B, Biswal BB. Calibrating BOLD fMRI activations with neurovascular and anatomical constraints. Cereb Cortex. 2013;23:255–63.

    Article  PubMed  Google Scholar 

  43. Tomasi D, Volkow ND. Reduced local and increased long-range functional connectivity of the thalamus in autism spectrum disorder. Cereb Cortex. 2019;29:573–85.

    Article  PubMed  Google Scholar 

  44. McInnes MD, Moher D, Thombs BD, McGrath TA, Bossuyt PM, Clifford T, Cohen JF, Deeks JJ, Gatsonis C, Hooft L. Preferred reporting items for a systematic review and meta-analysis of diagnostic test accuracy studies: the PRISMA-DTA statement. JAMA. 2018;319:388–96.

    Article  PubMed  Google Scholar 

  45. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage. 2002;15:273–89.

    Article  CAS  PubMed  Google Scholar 

  46. Avery JA, Powell JN, Breslin FJ, Lepping RJ, Martin LE, Patrician TM, Donnelly JE, Savage CR, Simmons WK. Obesity is associated with altered mid-insula functional connectivity to limbic regions underlying appetitive responses to foods. J Psychopharmacol (Oxf). 2017;31:1475–84.

    Article  Google Scholar 

  47. Wiemerslage L, Zhou W, Olivo G, Stark J, Hogenkamp PS, Larsson E-M, Sundbom M, Schiöth HB. A resting-state fMRI study of obese females between pre-and postprandial states before and after bariatric surgery. Eur J Neurosci. 2017;45:333–41.

    Article  PubMed  Google Scholar 

  48. Casanova R, Hayasaka S, Saldana S, Bryan NR, Demos KE, Desiderio L, Erickson KI, Espeland MA, Nasrallah IM, Wadden T. Relative differences in resting-state brain connectivity associated with long term intensive lifestyle intervention. Psychoneuroendocrinology. 2016;74:231–9.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Chao S-H, Liao Y-T, Chen VC-H, Li C-J, McIntyre RS, Lee Y, Weng J-C. Correlation between brain circuit segregation and obesity. Behav Brain Res. 2018;337:218–27.

    Article  PubMed  Google Scholar 

  50. Meng Q, Han Y, Ji G, Li G, Hu Y, Liu L, Jin Q, von Deneen KM, Zhao J, Cui G. Disrupted topological organization of the frontal-mesolimbic network in obese patients. Brain Imaging Behav. 2018;12:1544–55.

    Article  PubMed  Google Scholar 

  51. Prehn K, Jumpertz von Schwartzenberg R, Mai K, Zeitz U, Witte AV, Hampel D, Szela A-M, Fabian S, Grittner U, Spranger J. Caloric restriction in older adults—differential effects of weight loss and reduced weight on brain structure and function. Cereb Cortex. 2017;27:1765–78.

    PubMed  Google Scholar 

  52. Krafft CE, Pierce JE, Schwarz NF, Chi L, Weinberger AL, Schaeffer DJ, Rodrigue AL, Camchong J, Allison JD, Yanasak NE. An eight month randomized controlled exercise intervention alters resting state synchrony in overweight children. Neuroscience. 2014;256:445–55.

    Article  CAS  PubMed  Google Scholar 

  53. Ding K, Dragomir A, Bose R, Osborn LE, Seet MS, Bezerianos A, Thakor NV. Towards machine to brain interfaces: Sensory stimulation enhances sensorimotor dynamic functional connectivity in upper limb amputees. J Neural Eng. 2020;17:035002.

  54. Li G, Ji G, Hu Y, Xu M, Jin Q, Liu L, von Deneen KM, Zhao J, Chen A, Cui G. Bariatric surgery in obese patients reduced resting connectivity of brain regions involved with self-referential processing. Hum Brain Mapp. 2018;39:4755–65.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Li P, Shan H, Liang S, Nie B, Liu H, Duan S, Huang Q, Zhang T, Dong G, Guo Y. Sleeve gastrectomy recovering disordered brain function in subjects with obesity: a longitudinal fMRI study. Obes Surg. 2018;28:2421–8.

    Article  PubMed  Google Scholar 

  56. Nakamura Y, Ikuta T. Caudate–precuneus functional connectivity is associated with obesity preventive eating tendency. Brain Connect. 2017;7:211–7.

    Article  PubMed  Google Scholar 

  57. Tang D, Tao S, Ma J, Hu P, Long D, Wang J, Kong D. The effect of short cardio on inhibitory control ability of obese people. Int J Imaging Syst Technol. 2017;27:345–53.

    Article  Google Scholar 

  58. Li G, Hu Y, Zhang W, Ding Y, Wang Y, Wang J, He Y, Lv G, von Deneen KM, Zhao Y. Resting activity of the hippocampus and amygdala in obese individuals predicts their response to food cues. Addict Biol. 2020;e12974.

  59. Frank S, Wilms B, Veit R, Ernst B, Thurnheer M, Kullmann S, Fritsche A, Birbaumer N, Preissl H, Schultes B. Altered brain activity in severely obese women may recover after Roux-en Y gastric bypass surgery. Int J Obes. 2014;38:341–8.

    Article  CAS  Google Scholar 

  60. García-Casares N, Bernal-López MR, Roé-Vellvé N, Gutiérrez-Bedmar M, Fernández-García JC, García-Arnés JA, Ramos-Rodriguez JR, Alfaro F, Santamaria-Fernández S, Steward T. Brain functional connectivity is modified by a hypocaloric Mediterranean diet and physical activity in obese women. Nutrients. 2017;9:685.

    Article  PubMed Central  CAS  Google Scholar 

  61. Moreno-Lopez L, Contreras-Rodriguez O, Soriano-Mas C, Stamatakis EA, Verdejo-Garcia A. Disrupted functional connectivity in adolescent obesity. NeuroImage Clin. 2016;12:262–8.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Xia W, Wang S, Sun Z, Bai F, Zhou Y, Yang Y, Wang P, Huang Y, Yuan Y. Altered baseline brain activity in type 2 diabetes: a resting-state fMRI study. Psychoneuroendocrinology. 2013;38:2493–501.

    Article  PubMed  Google Scholar 

  63. Yin S, Zhu X, Li R, Niu Y, Wang B, Zheng Z, Huang X, Huo L, Li J. Intervention-induced enhancement in intrinsic brain activity in healthy older adults. Brain Stimul Basic Transl Clin Res Neuromodulation. 2015;8:414.

    Google Scholar 

  64. Zhang P, Liu Y, Lv H, Li M, Yu F, Wang Z, Ding H, Wang L, Zhao K, Zhang Z. Integration of neural reward processing and appetite-related signaling in obese females: evidence from resting-state fMRI. J Magn Reson Imaging. 2019;50:541–51.

    Article  PubMed  Google Scholar 

  65. Zhang Y, Wang J, Zhang G, Zhu Q, Cai W, Tian J, Zhang YE, Miller JL, Wen X, Ding M. The neurobiological drive for overeating implicated in Prader-Willi syndrome. Brain Res. 2015;1620:72–80.

    Article  CAS  PubMed  Google Scholar 

  66. Voss MW, Prakash RS, Erickson KI, Basak C, Chaddock L, Kim JS, Alves H, Heo S, Szabo A, White SM. Plasticity of brain networks in a randomized intervention trial of exercise training in older adults. Front Aging Neurosci. 2010;2:32.

    PubMed  PubMed Central  Google Scholar 

  67. Craig AD. How do you feel? Interoception: the sense of the physiological condition of the body. Nat Rev Neurosci. 2002;3:655–66.

    Article  CAS  PubMed  Google Scholar 

  68. de Araujo IE, Geha P, Small DM. Orosensory and homeostatic functions of the insular taste cortex. Chemosens Percept. 2012;5:64–79.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Beckstead RM, Morse JR, Norgren R. The nucleus of the solitary tract in the monkey: projections to the thalamus and brain stem nuclei. J Comp Neurol. 1980;190:259–82.

    Article  CAS  PubMed  Google Scholar 

  70. O’doherty JP, . Reward representations and reward-related learning in the human brain: insights from neuroimaging. Curr Opin Neurobiol. 2004;14:769–76.

    Article  CAS  Google Scholar 

  71. Gottfried JA, O’Doherty J, Dolan RJ. Encoding predictive reward value in human amygdala and orbitofrontal cortex. Science. 2003;301:1104–7.

    Article  CAS  PubMed  Google Scholar 

  72. Henderson YO, Smith GP, Parent MB. Hippocampal neurons inhibit meal onset. Hippocampus. 2013;23:100–7.

    Article  CAS  PubMed  Google Scholar 

  73. Geha P, Cecchi G, Todd Constable R, Abdallah C, Small DM. Reorganization of brain connectivity in obesity. Hum Brain Mapp. 2017;38:1403–20.

    Article  PubMed  Google Scholar 

  74. Hare TA, O’doherty J, Camerer CF, Schultz W, Rangel A. Dissociating the role of the orbitofrontal cortex and the striatum in the computation of goal values and prediction errors. J Neurosci. 2008;28:5623–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Rudebeck PH, Murray EA. The orbitofrontal oracle: cortical mechanisms for the prediction and evaluation of specific behavioral outcomes. Neuron. 2014;84:1143–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. De Wit L, Luppino F, van Straten A, Penninx B, Zitman F, Cuijpers P. Depression and obesity: a meta-analysis of community-based studies. Psychiatry Res. 2010;178:230–5.

    Article  PubMed  Google Scholar 

  77. Gariepy G, Nitka D, Schmitz N. The association between obesity and anxiety disorders in the population: a systematic review and meta-analysis. Int J Obes. 2010;34:407–19.

    Article  CAS  Google Scholar 

  78. Duehlmeyer L, Hester R. Impaired learning from punishment of errors in smokers: Differences in dorsolateral prefrontal cortex and sensorimotor cortex blood-oxygen-level dependent responses. NeuroImage Clin. 2019;23:101819.

  79. Leehr EJ, Krohmer K, Schag K, Dresler T, Zipfel S, Giel KE. Emotion regulation model in binge eating disorder and obesity–a systematic review. Neurosci Biobehav Rev. 2015;49:125–34.

    Article  PubMed  Google Scholar 

  80. Steward T, Picó-Pérez M, Mata F, Martínez-Zalacaín I, Cano M, Contreras-Rodríguez O, Fernández-Aranda F, Yucel M, Soriano-Mas C, Verdejo-García A. Emotion regulation and excess weight: Impaired affective processing characterized by dysfunctional insula activation and connectivity. PloS One. 2016;11:e0152150.

  81. Steward T, Picó-Pérez M, Mestre-Bach G, et al. A multimodal MRI study of the neural mechanisms of emotion regulation impairment in women with obesity. Transl Psychiatry. 2019;9:194.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Stice E, Spoor S, Bohon C, Veldhuizen MG, Small DM. Relation of reward from food intake and anticipated food intake to obesity: a functional magnetic resonance imaging study. J Abnorm Psychol. 2008;117:924–35.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Stice E, Spoor S, Ng J, Zald DH. Relation of obesity to consummatory and anticipatory food reward. Physiol Behav. 2009;97:551–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Voigt K, Razi A, Harding IH, Andrews ZB, Verdejo-Garcia A. Neural network modelling reveals changes in directional connectivity between cortical and hypothalamic regions in obesity. bioRxiv. 2020.

  85. Poldrack RA, Fletcher PC, Henson RN, Worsley KJ, Brett M, Nichols TE. Guidelines for reporting an fMRI study. Neuroimage. 2008;40:409–14.

    Article  PubMed  Google Scholar 

  86. Remijnse PL, Nielen MM, Uylings HB, Veltman DJ. Neural correlates of a reversal learning task with an affectively neutral baseline: an event-related fMRI study. Neuroimage. 2005;26:609–18.

    Article  PubMed  Google Scholar 

  87. Parsons N, Bowden SC, Vogrin S, D’Souza WJ. Single-subject manual independent component analysis and resting state fMRI connectivity outcomes in patients with juvenile absence epilepsy. Magn Reson Imaging. 2020;66:42–9.

    Article  PubMed  Google Scholar 

  88. Reynaud O, Jorge J, Gruetter R, Marques JP, van der Zwaag W. Influence of physiological noise on accelerated 2D and 3D resting state functional MRI data at 7 T. Magn Reson Med. 2017;78:888–96.

    Article  CAS  PubMed  Google Scholar 

  89. Gordon EM, Scheibel RS, Zambrano-Vazquez L, Jia-Richards M, May GJ, Meyer EC, Nelson SM. High-fidelity measures of whole-brain functional connectivity and white matter integrity mediate relationships between traumatic brain injury and post-traumatic stress disorder symptoms. J Neurotrauma. 2018;35:767–79.

    Article  PubMed  Google Scholar 

  90. Harding IH, Andrews ZB, Mata F, Orlandea S, Martinez-Zalacain I, Soriano-Mas C, Stice E, Verdejo-Garcia A. Brain substrates of unhealthy versus healthy food choices: influence of homeostatic status and body mass index. Int J Obes. 2018;42:448–54.

    Article  CAS  Google Scholar 

  91. Frank GKW, Favaro A, Marsh R, Ehrlich S, Lawson EA. Toward valid and reliable brain imaging results in eating disorders. Int J Eat Disord. 2018;51:250–61.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Preibisch C, Bührer M, Riedl V. Evaluation of multiband EPI acquisitions for resting state fMRI. PloS One. 2015;10:e0136961

  93. Birn RM, Molloy EK, Patriat R, Parker T, Meier TB, Kirk GR, Nair VA, Meyerand ME, Prabhakaran V. The effect of scan length on the reliability of resting-state fMRI connectivity estimates. Neuroimage. 2013;83:550–8.

    Article  PubMed  Google Scholar 

  94. Seo HS, Jang KE, Wang D, Kim IS, Chang Y. Accelerated resting-state functional magnetic resonance imaging using multiband echo-planar imaging with controlled aliasing. Investig Magn Reson Imaging. 2017;21:223–32.

  95. Feinberg DA, Setsompop K. Ultra-fast MRI of the human brain with simultaneous multi-slice imaging. J Magn Reson. 2013;229:90–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Feinberg DA, Yacoub E. The rapid development of high speed, resolution and precision in fMRI. Neuroimage. 2012;62:720–5.

    Article  PubMed  Google Scholar 

  97. Krause F, Benjamins C, Eck J, Lührs M, Hoof R, Goebel R. Active head motion reduction in magnetic resonance imaging using tactile feedback. Hum Brain Mapp. 2019;40:4026–37.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Friston KJ. Functional and Effective Connectivity: A Review. Brain Connect. 2011;1:13–36.

    Article  PubMed  Google Scholar 

  99. Tomasi D, Volkow ND. Association between brain activation and functional connectivity. Cereb Cortex. 2019;29:1984–96.

  100. Augustijn MJCM, Di Biase MA, Zalesky A, Van Acker L, De Guchtenaere A, D’Hondt E, Lenoir M, Deconinck FJA, Caeyenberghs K. Structural connectivity and weight loss in children with obesity: a study of the “connectobese.” Int J Obes. 2019;43:2309–21.

    Article  CAS  Google Scholar 

  101. Mumford JA. A power calculation guide for fMRI studies. Soc Cogn Affect Neurosci. 2012;7:738–42.

    Article  PubMed  PubMed Central  Google Scholar 

  102. García-García I, Jurado MÁ, Garolera M, Marqués-Iturria I, Horstmann A, Segura B, Pueyo R, Sender-Palacios MJ, Vernet-Vernet M, Villringer A, Junqué C. Functional network centrality in obesity: A resting-state and task fMRI study. Psychiatry Res Neuroimaging. 2015;233(3), pp.331-338.

  103. Hogenkamp PS, Zhou W, Dahlberg LS, Stark J, Larsen AL, Olivo G, Wiemerslage L, Larsson EM, Sundbom M, Benedict C, Schiöth HB. Higher resting-state activity in reward-related brain circuits in obese versus normal-weight females independent of food intake. Int J Obes (Lond). 2016 Nov;40(11):1687-1692. https://doi.org/10.1038/ijo.2016.105. Epub 2016 Jun 7. PMID: 27349694; PMCID: PMC5116051.

Download references

Funding

NP is supported by a Deakin University Postgraduate Research Scholarship (DUPRS). HA is supported by the Special Research Fund of Ghent University (grant No. BOF16/DOC/282; https://www.ugent.be/), and a grant for long stay abroad from the Fund for Scientific Research-Flanders (FWO–V; awarded to HA; http://www.fwo.be). TS is supported by a NHMRC/MRFF Investigator Grant (MRF1193736), a BBRF Young Investigator Grant, and a University of Melbourne McKenzie Fellowship. The authors Rebecca Clohesy and Leonie Duehlmeyer received no specific funding for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonie Duehlmeyer.

Ethics declarations

Ethics approval

This literature review did not require Ethics approval.

Consent to participate

This literature review did not require participants’ consent.

Consent for publication

The authors Nicholas Parsons, Trevor Steward, Rebecca Clohesy, Hannes Almgren, and Leonie Duehlmeyer consent for this article to be published.

Conflicts of interest

The authors Nicholas Parsons, Trevor Steward, Rebecca Clohesy, Hannes Almgren, and Leonie Duehlmeyer have no conflicts of interest to report.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

11154_2021_9665_MOESM1_ESM.tiff

Supplementary file1 Online Resource Fig. 1. PRISMA Flow Diagram Screening process applied to identified studies including identification, screening, eligibility assessments. A total of 1045 studies were identified, of which 24 met inclusion criteria (TIFF 964 KB)

11154_2021_9665_MOESM2_ESM.tiff

Supplementary file2 Online Resource Fig. 2. Aggregated MRI acquisition parameters. This figure shows aggregated MRI scanning parameters: Panel A shows repetition time in milliseconds; Panel B shows scan time in minutes; Panel C shows the number of volumes. In most studies, scans were acquired with 2000 ms repetition times using between 150 and 200 EPI volumes. Over 50% of studies used a scan duration of between 6 and 7 min (TIFF 2580 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parsons, N., Steward, T., Clohesy, R. et al. A systematic review of resting-state functional connectivity in obesity: Refining current neurobiological frameworks and methodological considerations moving forward. Rev Endocr Metab Disord 23, 861–879 (2022). https://doi.org/10.1007/s11154-021-09665-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-021-09665-x

Keywords

Navigation