Skip to main content

Advertisement

Log in

Tackling metabolic syndrome by functional foods

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

The metabolic syndrome is one of the most vibrant and widely prevailing health concerns worldwide. It is characterized by several metabolic abnormalities, which involve obesity, insulin resistance, dyslipidemia, enhanced oxidative stress; hypertension and increased pro-inflammatory state that ultimate contribute towards poor health. The prevalence of metabolic syndrome in Pakistan according to different definitions is reported to be from 18 % to 46 %. Fifty percent of Pakistani population is at high risk of metabolic syndrome as being hypertensive. In studying dyslipidemia in Pakistan, hypertriglyceridemia is found in 27–54 % of the population, whereas 68–81 % has low levels of high-density lipoprotein (HDL). Population likes to eat healthier diet without changing their fundamental dietary pattern. Nutrition science has moved on from the classical concepts of avoiding nutrient deficiencies and basic nutritional adequacy to the concept of positive or optimal nutrition. Many traditional food products including fruits, vegetables, flaxseed, oat, barley, whole grains, soy and milk have been found to contain component with potential health benefits. Nowadays, functional foods are used in the prevention and amelioration of several chronic diseases, such as the metabolic syndrome. The relation of the consumption of certain functional foods and the improvement in health status is regulated through health claims. This review focuses on the different features of the metabolic syndrome and the influence of functional foods on these aspects, involving dyslipidemia, improvement of insulin sensitivity, serum lipid profile, antioxidant status, anti-inflammatory status and weight management of humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Wilson PW, D’Agostino RB, Parise H, Sullivan L, Meigs JB. Metabolic syndrome as a precursor of cardiovascular disease and type 2 diabetes mellitus. Circulation. 2005;112:3066–72.

    Article  PubMed  CAS  Google Scholar 

  2. Katzmaryk PT, Leon AS, Wilmore JH, Skinner JS, Rao DC, Rankinen T, et al. Targeting the metabolic syndrome with exercise: evidence from the heritage family study. Medial Sci Sports Exerc. 2003;35(10):1703–9.

    Article  CAS  Google Scholar 

  3. Fauci AS. Harrison’s principles of internal medicine. McGraw-Hill Medical. ISBN 0-07-147692-X. 2008.

  4. Snijder MB, vander Heijden AA, van Dam RM, et al. Is higher dairy consumption associated with lower body weight and fewer metabolic disturbances? The Hoorn Study. Am J Clin Nutr. 2007;85(4):989–95.

    PubMed  CAS  Google Scholar 

  5. Wildman REC. Handbook of nutraceuticals and functional foods. 2nd ed. Boca Raton: CRC Press; 2006.

    Book  Google Scholar 

  6. Arnoldi A. Functional foods, cardiovascular disease and diabetes. Cambridge: Woodhead Publishing Limited; 2004.

    Book  Google Scholar 

  7. Heasman M. The regulation of functional foods and beverages in Japan. In: Blenford DE, editor. Proceedings of the 1st Vitafoods International Conference. Copenhagen: Food Tech Europe; 1997.

    Google Scholar 

  8. Hasler CM. Scientific status summary. Functional foods: their role in disease prevention and health promotion. Food Technol. 1998;52(11):63–70.

    Google Scholar 

  9. Van SC, Angerer P, Kothny W, Theisen K, Mudra H. The effect of dietary omega-3 fatty acids on coronary atherosclerosis. A randomized, double-blind, placebo-controlled trial. Annu Int Med. 1999;130(7):554–62.

    Article  Google Scholar 

  10. Goldin BR. Health benefits of probiotics. Br J Nutr. 1999;80:S203–7.

    Google Scholar 

  11. Ares G, Giménez A, Gámbaro A. Consumer perceived healthiness and willingness to try functional milk desserts. Influence of ingredient, ingredient name and health claim. Food Qual Prefer. 2009;20(1):50–6.

    Article  Google Scholar 

  12. Etoh T, Watanabe H, Iwai S. RAPD variation of garlic clones in the center of origins and the western area of distribution. Kagawa Univ. 2001;37:21–7.

    CAS  Google Scholar 

  13. Tapiero H, Townsend DM, Tew KD. Organosulfur compounds from alliaceae in the prevention of human pathologies. Biomed Pharmacother. 2004;58:183–93.

    Article  PubMed  CAS  Google Scholar 

  14. Oh SY, Ryue J, Hsieh CH, Bell DE. Eggs enriched in omega-3 fatty acids and alterations in lipid concentrations in plasma and lipoproteins and in blood pressure. Am J Clin Nutr. 1991;54(4):689–95.

    PubMed  CAS  Google Scholar 

  15. De Lorgeril M, Salen P. Dietary prevention of coronary heart disease: focus on Omega-6/Omega-3 essential fatty acid balance. World Rev Nutr Diet. 2003;92:57–73.

    Article  PubMed  Google Scholar 

  16. Berg A, König D, Deibert P, Grathwohl D, Berg A, Baumstark MW, et al. Effect of an oat bran enriched diet on the atherogenic lipid profile in patients with an increased coronary heart disease risk. Ann Nutr Metab. 2003;47:306–11.

    Article  PubMed  CAS  Google Scholar 

  17. Biörklund M, Holm J, Önning G. Serum lipids and postprandial glucose and insulin levels in hyperlipidemic subjects after consumption of an oat β-Glucan-Containing Ready Meal. Ann Nutr Metab. 2008;52:83–90.

    Article  PubMed  CAS  Google Scholar 

  18. Hu FB, Bronner L, Willett WC, Stampfer MJ, Rexrode KM, Albert CM, et al. Fish and Omega-3 fatty acid intake and risk of coronary heart disease in women. J Am Med Assoc. 2002;287(14):1815–21.

    Article  CAS  Google Scholar 

  19. Kris-Etherton PM, Harris WS, Appel LJ. Fish consumption, fish oil, Omega-3 fatty acids, and cardiovascular disease. Arterioscler Thromb Vasc Biol. 2003;23:20–30.

    Article  Google Scholar 

  20. Zhuo XG, Melby MK, Watanabe S. Soy isoflavone intake lowers serum LDL cholesterol: a meta-analysis of 8 randomized controlled trials in humans. J Nutr. 2004;134(9):2395–400.

    PubMed  CAS  Google Scholar 

  21. Miettinen TA, Puska P, Gylling H, Vanhanen H, Vartiainen E. Reduction of serum cholesterol with sitostanol-ester margarine in a mildly hypercholesterolemic population. N Engl J Med. 1995;333:1308–12.

    Article  PubMed  CAS  Google Scholar 

  22. Klingberg TD, Budde BB. The survival and persistence in the human gastrointestinal tract of five potential probiotic lactobacilli consumed as freeze-dried cultures or as probiotic sausage. Int J Food Microbiol. 2006;109(1–2):157–9.

    Article  PubMed  Google Scholar 

  23. Kris-Etherton PM, Guixiang Zhao RD, Binkoski AE, Coval SM, Etherton TD. The effects of nuts on coronary heart disease risk. Nutr Rev. 2009;59(4):103–11.

    Article  Google Scholar 

  24. Bertelli AAA, Das DK. Grapes, wines, resveratrol, and heart health. J Cardiovasc Pharmacol. 2009;54(6):468–76.

    Article  PubMed  CAS  Google Scholar 

  25. Lawson LD, Ransom DK, Hughes BG. Inhibition of whole blood platelet aggregation by compounds in garlic glove extracts and commercial garlic products. Thromb Res. 1992;65:141–56.

    Article  PubMed  CAS  Google Scholar 

  26. Yutani M, Taniguchi H, Borjihan H, Ogita A, Fujita K, Tanaka T. Alliinase from ensifer adhaerens and its use for generation of fungicidal activity. AMB Exp. 2011;1(2):1–8.

    Google Scholar 

  27. Singh BB, Vinjamury SP, Der-Martirosian C, Kubik E, Mishra LC, Shepard NP, et al. Ayurvedic and collateral herbal treatments for hyperlipidemia: a systematic review of randomized controlled trials and quasi-experimental designs. Altern Ther Health Med. 2007;13:22–8.

    PubMed  Google Scholar 

  28. Staba EJ, Lisal L, Staba JE. A commentary on the effects of garlic extraction and formulation on product composition. J Nutr. 2001;131:11185–95.

    Google Scholar 

  29. Slowing K, Ganado P, Sanz M, Ruiz E, Tejerina T. Study of garlic extracts and fractions on cholesterol plasma levels and vascular reactivity in cholesterol-fed rats. J Nutr. 2001;6:994–9.

    Google Scholar 

  30. Mukherjee B, Patra B, Mahapatra S, Banerjee P, Tiwari A, Chatterjee M. Vanadium-an element of atypical biological significance. Toxicol Lett. 2004;150:135–43.

    Article  PubMed  CAS  Google Scholar 

  31. Queenan KM, Stewart ML, Smith KN, Thomas W, Fulcher RG, Slavin JL. Concentrated oat beta-glucan, a fermentable fiber, lowers serum cholesterol in hypercholesterolemic adults in a randomized controlled trial. Nutr J. 2007;6:6–12.

    Article  PubMed  CAS  Google Scholar 

  32. Theuwissen E, Mensink RP. Water-soluble dietary fibers and cardiovascular disease. Physiol Behav. 2008;94:285–92.

    Article  PubMed  CAS  Google Scholar 

  33. Cloetens L, Ulmius M, Johansson-Persson A, Akesson B, Onning G. Role of dietary beta-glucans in the prevention of the metabolic syndrome. Nutr Rev. 2012;70(8):444–58.

    Article  PubMed  Google Scholar 

  34. Othman RA, Moghadasian MH, Jones PJ. Cholesterol-lowering effects of oat â-glucan. Nutr Rev. 2011;69(6):299–309.

    Article  PubMed  Google Scholar 

  35. GISSIP. Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: results of the GISSIP revenzione trial. Gruppo Italiano per lo Studio della Sopravvivenza nell’Infarto miocardico. Lancet. 1999;354:447–55.

    Article  Google Scholar 

  36. Yokoyama M, Origasa H, Matsuzaki M. Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): a randomised open-label, blinded endpoint analysis. Lancet. 2007;369:1090–8.

    Article  PubMed  CAS  Google Scholar 

  37. Jacobson TA. Role of n-3 fatty acids in the treatment of hypertriglyceridemia and cardiovascular disease. Am J Clin Nutr. 2008;87:1981–90.

    Google Scholar 

  38. Bays HE, Tighe AP, Sadovsky R, Davidson MH. Prescription omega-3 fatty acids and their lipid effects: physiologic mechanisms of action and clinical implications. Expert Rev Cardiovasc Ther. 2008;6:391–409.

    Article  PubMed  CAS  Google Scholar 

  39. Galan P, Kesse-Guyot E, Czernichow S, Briancon S, Blacher J, Hercberg S. Effects of B vitamins and omega 3 fatty acids on cardiovascular diseases: a randomized placebo controlled trial. Br Med J. 2010;341:62–73.

    Article  Google Scholar 

  40. Kromhout D, Giltay EJ, Geleijnse JM. n-3 fatty acids and cardiovascular events after myocardial infarction. New Engl J Med. 2010;363:2015–26.

    Article  PubMed  CAS  Google Scholar 

  41. Anderson RA, Broadhurst CL, Polansky MM. Isolation and characterization of polyphenol type-A polymers from cinnamon with insulin-like biological activity. J Agric Food Chem. 2004;52:65–70.

    Article  PubMed  CAS  Google Scholar 

  42. Khan A, Safdar M, Ali MM, Khattak KN, Anderson RA. Cinnamon improves glucose and lipids of people with type 2 diabetes. Diabetes Care. 2003;26:3215–28.

    Article  PubMed  Google Scholar 

  43. Mang B, Wolters M, Schmitt B. Effects of a cinnamon extract on plasma glucose, HbA, and serum lipids in diabetes mellitus type 2. Eur J Clin Invest. 2006;36:340–4.

    Article  PubMed  CAS  Google Scholar 

  44. Baker WL, Gutierrez-Williams G, White CM, Kluger J, Coleman CI. Effect of cinnamon on glucose control and lipid parameters. Diabetes Care. 2008;31:41–3.

    Article  PubMed  Google Scholar 

  45. Blevins SM, Leyva MJ, Brown J, Wright J, Scofield RH, Aston CE. Effect of cinnamon on glucose and lipid levels in non-insulin-dependent type 2 diabetes. Diabetes Care. 2007;30:2236–7.

    Article  PubMed  Google Scholar 

  46. Gary S. Spice Healer. Sci Am. 2007;296:66–9.

    Google Scholar 

  47. Jimenez-Escrig A, Rincon M, Pulido R, Saura-Calixo F. Guava fruit (Psidium guajava L.) as a new source of antioxidant dietary fiber. J Agric Food Chem. 2001;49:5489–93.

    Article  PubMed  CAS  Google Scholar 

  48. Rai PK, Singh SK, Kesari AN, Watal G. Glycaemic evaluation of Psidium guajava in rats. Indian J Med Res. 2007;126:224–7.

    PubMed  CAS  Google Scholar 

  49. Das AK, Mandal SC, Banerjee SK, Sinha S, Saha BP, Pal M. Studies on the hypoglycaemic activity of Punica granatum seed in streptozotocin induced diabetic rats. Phytother Res. 2001;15:628–9.

    Article  PubMed  CAS  Google Scholar 

  50. Higdon JV, Frei B. Coffee and health: a review of recent human research. Crit Rev Food Sci Nutr. 2006;46:101–23.

    Article  PubMed  CAS  Google Scholar 

  51. Van Dam RM, Feskens EJ. Coffee consumption and risk of type 2 diabetes mellitus. Lancet. 2002;361:702–3.

    Google Scholar 

  52. Van Dam RM, Pasman WJ, Verhoef P. Effects of coffee consumption on fasting blood glucose and insulin concentrations: randomized controlled trials in healthy volunteers. Diabetes Care. 2004;27:2990–2.

    Article  PubMed  Google Scholar 

  53. Setchell KDR, Lawson AM, Borriello SP, Harkness R, Gordon H, Morgan DML, et al. Lignan formation in man – microbial involvement and possible roles in relation to cancer. Lancet. 1981;Ii:4–7.

    Article  Google Scholar 

  54. Potter SM. Soy protein and cardiovascular disease: the impact of bioactive components in soy. Nutr Rev. 1998;56(8):231–5.

    Article  PubMed  CAS  Google Scholar 

  55. Zhuo XG, Melissa KM, Shaw W. Soy isoflavone intake lowers serum LDL cholesterol: a meta-analysis of 8 randomized controlled trials in humans. J Nutr. 2004;134:2395–400.

    PubMed  CAS  Google Scholar 

  56. Amani RA, Baghdadchi JB, Zand-Moghaddam AA. Effects of soy protein isoflavones on serum lipids, lipoprotein profile and serum glucose of hypercholesterolemic rabbits. Int J Endocrinol Metab. 2005;2:87–92.

    Google Scholar 

  57. Lewis NM, Seburg S, Flanagan NL. Enriched eggs as a source of N-3 polyunsaturated fatty acids for humans. Poult Sci. 2000;79:971–4.

    PubMed  CAS  Google Scholar 

  58. Bierenbaum ML, Reichstein R, Watkins TR. Reducing atherogenic risk in hyperlipemic humans with flax seed supplementation: a preliminary report. J Am Coll Nutr. 1993;12:501–4.

    Article  PubMed  CAS  Google Scholar 

  59. Carter JF. Potential of flaxseed and flaxseed oil in baked goods and other products in human nutrition. Cereal Foods World. 1993;38(10):753–9.

    CAS  Google Scholar 

  60. Thompson LU, Robb P, Serraino M, Cheung F. Mammalian lignan production from various foods. Nutr Cancer. 1991;16:43–52.

    Article  PubMed  CAS  Google Scholar 

  61. Cunnane SC, Ganguli S, Menard C, Liede AC, Hamadeh MJ, Chen Z-Y, et al. High-linolenic acid flaxseed (Linum usitatissimum): some nutritional properties in humans. Br J Nutr. 1993;69:443–53.

    Article  PubMed  CAS  Google Scholar 

  62. DHHS/FDA. Food labeling: health claims; oats and coronary heart disease. Dep Hum Serv/Food Drug Admin Fed Regul. 1997;62:3584–601.

    Google Scholar 

  63. Allman MA, Pena MM, Pang D. Supplementation with flaxseed oil versus sunflower seed oil in healthy young men consuming a low fat diet: effects on platelet composition and function. Eur J Clin Nutr. 1995;49:169–78.

    PubMed  CAS  Google Scholar 

  64. Sanders ME. Lactic acid bacteria as promoters of human health. In: Goldberg I, editor. Functional foods -- designer foods, pharmafoods, nutraceuticals. New York: Chapman & Hall; 1994. p. 294–322.

    Google Scholar 

  65. Howard BV, Kritchevsky D. Phytochemicals and cardiovascular disease. A statement for health care professionals from the American Heart Association. Circulation. 1997;95:2591–3.

    Article  PubMed  CAS  Google Scholar 

  66. Adak M, Shivapuri JN. Serum lipid and lipoprotein profile abnormality in predicting the risk of coronary artery disease in non-diabetic patients attending NMCTH, Birgunj. Nepal Med Coll J. 2010;12(3):158–64.

    PubMed  CAS  Google Scholar 

  67. Jin KP, Sook MS. Nutrient intakes and serum lipid profiles are improved in elderly Korean women with home food delivery. Nutr Res. 2007;27:78–85.

    Article  CAS  Google Scholar 

  68. Frontera WR, Suh D, Krivickas LS. Skeletal muscle fiber quality in older men and women. Am J Cell Physiol. 2000;279:611–8.

    Google Scholar 

  69. Mark DH, Amanda MW, Wayne WC. Beef and soy-based food supplements differentially affect serum lipoprotein-lipid profiles because of changes in carbohydrate intake and novel nutrient intake ratios in older men who resistive-train. Metab Clin Exp. 2005;54:769–74.

    Article  CAS  Google Scholar 

  70. Julia MWW, Cyril WCK, Russell-de S, Azadeh E, Augustine M, Ed V, et al. The effect on the blood lipid profile of soy foods combined with a prebiotic: a randomized controlled trial. Metab Clin Exp. 2010;59:1331–40.

    Article  CAS  Google Scholar 

  71. Weaver KL, Ivester P, Seeds M, Case DL, Arm JP, Chilton FH. Effect of dietary fatty acids on inflammatory gene expression in healthy humans. J Biol Chem. 2009;284:15400–7.

    Article  PubMed  CAS  Google Scholar 

  72. Jamison JR. Clinical guide to nutrition and dietary supplements in disease management. London: Churchill Livingstone; 2003.

    Google Scholar 

  73. Liu CT, Hse H, Lii CK, Chen PS, Sheen LY. Effects of garlic oil and diallyl trisulfide on glycemic control in diabetic rats. Eur J Pharmacol. 2005;516:165–73.

    Article  PubMed  CAS  Google Scholar 

  74. Augusti KT, Sheela CG. Antiperoxide effect of S-allyl cysteine sulfoxide. An insulin secretagogue, in diabetic rats. Cell Mol Life Sci. 1996;52:15–120.

    Article  Google Scholar 

  75. Balde NM, Youla A, Balde MD, Kake A, Diallo MM, Balde MA. Herbal medicine and treatment of diabetes in Africa: an example from guinea. Diabetes Metab. 2006;32:171–5.

    Article  PubMed  CAS  Google Scholar 

  76. Babu PS, Srinivasan K. Renal lesions in streptozotocin-induced diabetic rats maintained on onion and capsaicin containing diets. J Nutr Biochem. 1999;10:477–83.

    Article  PubMed  CAS  Google Scholar 

  77. Kumari K, Mathew BC, Augusti KT. Antidiabetic and hypolipidemic effects of Smethyl cysteine sulfoxide isolated from Allium cepa Linn. Indian J Biochem Biophys. 1995;32:49–54.

    PubMed  CAS  Google Scholar 

  78. Puri D, Prabhu KM, Murthy PS. Mechanism of action of a hypoglycemic principle isolated from fenugreek seeds. Indian J Physiol Pharmacol. 2002;4:457–62.

    Google Scholar 

  79. Raghuram TC, Sharma RD, Sivakumar B. Effect of fenugreek seeds on intravenous glucose disposition in non-insulin dependent diabetic patients. Phytother Res. 1994;8:83–6.

    Article  Google Scholar 

  80. Poppitt SD, Van DJD, McGill AT, Mulvey TB, Leahy FE. Supplementation of a high-carbohydrate breakfast with barley betaglucan improves postprandial glycaemic response for meals but not beverages. Asia Pac J Clin Nutr. 2007;16:16–24.

    PubMed  CAS  Google Scholar 

  81. Rhee KS, Kim ES, Kim BK, Jung BM, Rhee KC. Extrusion of minced catfish with corn and defeatted soy folurs for snack foods. J Food Process Preserv. 2004;28:288–301.

    Article  Google Scholar 

  82. Belay A, Ture K, Redi M, Asfaw A. Measurement of caffeine in coffee beans with UV/vis spectrometer. Food Chem. 2008;108:310–5.

    Article  CAS  Google Scholar 

  83. Sacks FM, Svetkey LP, Vollmer WM. Effects on blood pressure of reduced dietary sodium and the dietary approaches to stop hypertension (DASH) diet. DASH-Sodium Collaborative Research Group. N Engl J Med. 2001;344:3–10.

    Article  PubMed  CAS  Google Scholar 

  84. Kromhout D, Giltay EJ, Geleijnse JM. Omega-3 fatty acids and cardiovascular events after myocardial infarction. N Engl J Med. 2010;363:2015–26.

    Article  PubMed  CAS  Google Scholar 

  85. Ajani UA, Ford ES, Mokdad AH. Dietary fiber and C-reactive protein: findings from national health and nutrition examination survey data. J Nutr. 2004;134:1181–5.

    PubMed  CAS  Google Scholar 

  86. Hodgson JM, Burke V, Beilin LJ, Puddey IB. Partial substitution ofcarbohydrate intake with protein intake from lean red meat lowers blood pressure in hypertensive persons. Am J Clin Nutr. 2006;83:780–7.

    PubMed  CAS  Google Scholar 

  87. King DE, Egan BM, Woolson RF, Mainous AG, Al-Solaiman Y, Jesri A. Effect of a high-fiber diet vs a fiber-supplemented diet on C-reactive protein level. Arch Intern Med. 2007;167:502–6.

    Article  PubMed  CAS  Google Scholar 

  88. Yu Y, Hu JN, Miyaguchi YJ, Bai XF, Du YG, Lin BC. Isolation and characterization of angiotensin I-converting enzyme inhibitory peptides derived from porcine hemoglobin. Peptides. 2006;11:29–40.

    Google Scholar 

  89. Umezawa H, Aoyagi H, Ogawa K, Diprotein A. Inhibitors of Dipeptidyl amino peptidase IV, produced by Bacteria. J Antibiot. 1984;26:422–45.

    Article  Google Scholar 

  90. Muruganandan S, Gupta S, Kataria M, Lal J, Gupta PK. Mangiferin protects the streptozotocin-induced oxidative damage to cardiac and renal tissues in rats. Food Toxicol. 2002;176:165–73.

    Article  CAS  Google Scholar 

  91. Ooi CP, Yassin Z, Hamid TA. Momordica charantia for type 2 diabetes mellitus. Cochrane Database Syst Rev. 2010;2, CD007845.

    PubMed  Google Scholar 

  92. Zhang PP, Wang F, Xue AQ. Experimental study on antihyperglycemic effect of “Kuguasu” Jiangsu. J Tradit Chin Med. 1992;13:30–1.

    CAS  Google Scholar 

  93. Kuroda MM, Mimaki YY, Ohtomo TT, Yamada JJ, Nishiyama TT, Mae TT, et al. Hypoglycemic effects of clove (Syzygium aromaticum flower buds) on genetically diabetic KK-Ay mice and identification of the active ingredients. J Nat Med. 2012;66:394–9.

    Article  PubMed  CAS  Google Scholar 

  94. Lammert A, Kratzsch J, Selhorst J, Humpert PM, Bierhaus A, Birck R. Clinical benefit of a short term dietary oatmeal intervention in patients with type 2 diabetes and severe insulin resistance: a pilot study. Exp Clin Endocrinol Diabetes. 2008;16:132–4.

    Article  CAS  Google Scholar 

  95. Yan Y, Guo J, Yao WH, Yang F. Effect of oat b-glucan on blood glucose in alloxaninduced diabetic mice. Modern Prev Med. 2011;38:449–50.

    Google Scholar 

  96. Brehm BJ, Lattin BL, Summer SS. One year comparison of a high monounsaturated fat diet with a highcarbohydrate diet in type 2 diabetes. Diabetes Care. 2008;136:987–92.

    Google Scholar 

  97. Kris-Etherton PM, Hu FB, Ros E, Sabate J. The role of tree nuts and peanuts in the prevention of coronary heart disease: multiple potential mechanisms. J Nutr. 2008;138:1746–51.

    Google Scholar 

  98. Zeng Y, Pu X, Du J, Yang S, Yang T, Jia P. Use of functional foods for diabetes prevention in China. Afr J Pharm Pharmacol. 2012;6:2570–9.

    Article  CAS  Google Scholar 

  99. Diplock AT, Aggett PJ, Ashwell M, Bornet F, Fern EB, Roberfroid MB. Scientific concepts of functional foods in Europe: consensus document. Br J Nutr. 2000;81:51–5.

    Google Scholar 

  100. Meisel H, Fitzgerald RJ. Biofunctional peptides from milk proteins: mineral binding and cytomodulatory effects. Curr Pharmacol. 2003;43:78–89.

    Google Scholar 

  101. Hartmann R, Meisel H. Food-derived peptides with biological activity: from research to food applications. Curr Opin Biotechnol. 2007;18:163–6.

    Article  PubMed  CAS  Google Scholar 

  102. Kearney PM, Whelton M, Reynolds K, Muntner P, Whelton PK, He J. Global burden of hypertension. J Nutr. 2005;365:217–22.

    Google Scholar 

  103. Hernandez-Ledesma B, Recio I, Amigo L. β-lactoglobulin as source of bioactive peptides. J Amino Acids. 2008;35:257–9.

    Article  CAS  Google Scholar 

  104. Saito T. Antihypertensive peptides derived from bovine casein and whey proteins: bioactive components of milk. Adv Exp Med. 2008;606:295–9.

    Article  CAS  Google Scholar 

  105. Miguel M, Aleixandre MA, Ramos M, Lopez-Fandino R. Effect of simulated gastrointestinal digestion on the antihypertensive properties of ACE-inhibitory peptides derived from ovalbumin. J Agric Food Chem. 2006;54:726.

    Article  PubMed  CAS  Google Scholar 

  106. Jung WK, Mendis E, Je JY, Park PJ. Angiotensin I-converting enzyme inhibitory peptide from yellowfin sole (Limanda aspera) frame protein and its antihypertensive effect in spontaneously hypertensive rats. Food Chem. 2006;94:26–30.

    Article  CAS  Google Scholar 

  107. Qian ZJ, Kim SK. Antihypertensive effect of angiotensin I converting enzyme-inhibitory peptide from hydrolyzates of bigeye tuna dark muscle, Thumus obesus. J Agric Food Chem. 2007;55:83–98.

    Article  CAS  Google Scholar 

  108. Aluko RE. Determination of nutritional and bioactive properties of peptides in enzymatic pea, chickpea, and mung bean protein hydrolysates. Food Chem. 2008;91:947–50.

    CAS  Google Scholar 

  109. Abdul-Hamid A, Bakar J, Bee GH. Nutritional quality of spray dried protein hydrolysate from Black Tilapia (Oreochromismossambicus). Food Chem. 2002;78:69–72.

    Article  CAS  Google Scholar 

  110. Vaslin S, Le Guillou A, Hannoucene B, Saint DT. Protection of bioactive food ingredients by means of encapsulation. Food Chem. 2006;79:45–9.

    Google Scholar 

  111. Favaro-Trindade CS, Santana AS, Monterrey-Quintero ES. The use of spray drying technology to reduce bitter taste of casein hydrolysate. Food Hydrocolloids. 2010;24:336–9.

    Article  CAS  Google Scholar 

  112. Devos P, Faas MM, Sikkema M. Encapsulation for preservation of functionality and targeted delivery of bioactive food components. Food Hydrocolloids. 2010;20:292–6.

    CAS  Google Scholar 

  113. Paul M, Somkuti GA. Hydrolytic breakdown of lactoferricin by lactic acid bacteria. J Indian Microbiol Biotechnol. 2010;37:173–7.

    Article  CAS  Google Scholar 

  114. Sesso HD, Liu S, Gaziano JM, Buring JE. Dietary lycopene, tomato-based food products and cardiovascular disease in women. J Nutr. 2003;133:2336–41.

    PubMed  CAS  Google Scholar 

  115. Murakami K, Sasaki S, Okubo H, Takahashi Y, Hosoi Y, Itabashi M. Dietary fiber intake, dietary glycemic index and load, and body mass index: a Cross-sectional Study of 3931 Japanese Women Aged 18–20 years. Eur J Clin Nutr. 2007;61:986–95.

    Article  PubMed  CAS  Google Scholar 

  116. Kopp-Hoolihan L. Prophylactic and therapeutic uses of probiotics: a review. J Am Dent Assoc. 2001;101:229–38.

    Article  CAS  Google Scholar 

  117. Bhattacharya S. Therapy and clinical trials: plant sterols and stanols in management of hypercholesterolemia: where are we now? Curr Opin Lipidol. 2006;17:98–100.

    Article  PubMed  CAS  Google Scholar 

  118. Roudsari AH, Tahbaz F, Hossein-Nezhad A, Arjmandi B, Larijani B, Kimiagar SM. Assessment of soy phytoestrogens’ effects on bone turnover indicators in menopausal women with osteopenia in Iran: a before and after clinical trial. J Nutr. 2005;4:30–8.

    Article  CAS  Google Scholar 

  119. Kawada T, Hagihara K, Iwai K. Effects of capsaicin on lipid metabolism in rats fed a high fat diet. J Nutr. 1986;116:1272–8.

    PubMed  CAS  Google Scholar 

  120. Su-Chen H, Chang KS, Lin CC. Anti-neuroinflammatory capacity of fresh ginger is attributed mainly to 10-gingerol. Food Chem. 2013;141:3183–91.

    Article  CAS  Google Scholar 

  121. Yoshioka M, Lim K, Kikuzato S. Effects of red-pepper diet on the energy metabolism in men. J Nutr Sci Vitaminol. 1995;41:647–56.

    Article  PubMed  CAS  Google Scholar 

  122. Lejeune MP, Kovacs EM, Westerterp-Plantenga MS. Effect of capsaicin on substrate oxidation and weight maintenance after modest body-weight loss in human subjects. Br J Nutr. 2003;90:651–59.

    Article  PubMed  CAS  Google Scholar 

  123. Yoshioka M, St-Pierre S, Suzuki M, Tremblay A. Effects of red pepper added to high-fat and high-carbohydrate meals on energy metabolism and substrate utilization in Japanese women. Br J Nutr. 1998;80:503–10.

    PubMed  CAS  Google Scholar 

  124. Yoshioka M, Doucet E, Drapeau V, Dionne I, Tremblay A. Combined effects of red pepper and caffeine consumption on 24 h energy balance in subjects given free access to foods. Br J Nutr. 2001;85:203–11.

    Article  PubMed  CAS  Google Scholar 

  125. Westerterp-Plantenga MS, Smeets A, Lejeune MP. Sensory and gastrointestinal satiety effects of capsaicin on food intake. Int J Obes (Lond). 2005;29:682–8.

    Article  CAS  Google Scholar 

  126. Nagao T, Hase T, Tokimitsu I. A green tea extract high in catechins reduces body fat and cardiovascular risks in humans. Obesity. 2007;15:1473–83.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors report no conflicts of interest for the content of paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Issa Khan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, M.I., Anjum, F.M., Sohaib, M. et al. Tackling metabolic syndrome by functional foods. Rev Endocr Metab Disord 14, 287–297 (2013). https://doi.org/10.1007/s11154-013-9270-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-013-9270-8

Keywords

Navigation