Skip to main content
Log in

Self-Propagating High-Temperature Synthesis of Composite Material Based on Stabilized Zirconium Oxide1

  • Published:
Refractories and Industrial Ceramics Aims and scope

Ceramic composite materials based on stabilized zirconium oxide with up to 9 mol.% of the stabilizing additive Y2O3 were obtained in this work by self-propagating high-temperature synthesis. The effect of the stabilizing additive content on the combustion characteristics of the obtained materials and their phase composition was studied. Introduction of Y2O3 into the studied materials was shown to lead to the formation of the cubic modification of ZrO2 in the synthesis products, while three ZrO2 modifications were observed without introduction of Y2O3 into the synthesis products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. H. Wang, Y. Li, and T. Zhu, “Strengthening of Al2O3-C slide gate plate refractories with microcrystalline graphite,” Ceram. Int., 43(13), 9912 – 9918 (2017); DOI: https://doi.org/10.1016/j.ceramint.2017.04.178.

    Article  CAS  Google Scholar 

  2. J. Ban, C. Zhou, L. Feng, et al., “Preparation and application of ZrB2-SiCw composite powder for corrosion resistance improvement in Al2O3–ZrO2–C slide plate materials,” Ceram. Int., 46(7), 9817 – 9825 (2020); DOI: https://doi.org/10.1016/j.ceramint.2019.12.255.

    Article  CAS  Google Scholar 

  3. Q. Gu, T. Ma, F. Zhao, et al., “Enhancement of the thermal shock resistance of MgO–C slide plate materials with the addition of nano-ZrO2 modified magnesia aggregates,” J. Alloys Compd., 847, Art. 156339 (2020); DOI: https://doi.org/10.1016/j.jallcom.2020.156339.

  4. K. Matsui, H. Yoshida, and Y. Ikuhara, “Review: Microstructure development mechanism during sintering in polycrystalline zirconia,” Int. Mater. Rev., No. 63, 1 – 32 (2017); DOI: https://doi.org/10.1080/09506608.2017.1402424.

  5. G. Chen, Y. Ling, Q. Li, et al., “Stability properties and structural characteristics of CaO-partially stabilized zirconia ceramics synthesized from fused ZrO2 by microwave sintering,” Ceram. Int., 46(10), 16842 – 16848 (2020); DOI: https://doi.org/10.1016/j.ceramint.2020.03.261.

    Article  CAS  Google Scholar 

  6. Q. Chen, T. Zhu, Y. Li, et al., “Enhanced performance of low-carbon MgO–C refractories with nano-sized ZrO2–Al2O3 composite powder,” Ceram. Int., 47(14), 20178 – 20186 (2021); DOI: https://doi.org/10.1016/j.ceramint.2021.04.024.

    Article  CAS  Google Scholar 

  7. N. Lu, G. He, Z. Yang, et al., “Fabrication and reaction mechanism of MgO-stabilized ZrO2 powders by combustion synthesis,” Ceram. Int., 48(5), 7261 – 7264 (2021); DOI: https://doi.org/10.1016/j.ceramint.2021.11.286.

    Article  CAS  Google Scholar 

  8. M. Vojtko, V. Puchy, E. Mudra, et al., “Coarse-grain CeO2 doped ZrO2 ceramic prepared by spark plasma sintering,” J. Eur. Ceram. Soc., 40(14), 4844 – 4852 (2020); DOI: https://doi.org/10.1016/j.jeurceramsoc.2020.05.014.

    Article  CAS  Google Scholar 

  9. Sh. Zhai, J. Liu, D. Lan, et al., “High temperature tensile strength of large size Al2O3/ZrO2(Y2O3) directionally solidified eutectic ceramics,” Mater. Lett., 307, 130950 (2022); DOI: https://doi.org/10.1016/j.matlet.2021.130950.

    Article  CAS  Google Scholar 

  10. D. Kunying, Ch. Taotao, and H. Zhiyong, “Formation and properties of porous ZrO2 – 8 wt.% Y2O3 coatings,” Rare Met. Mater. Eng., 47(6), 1677 – 1681 (2018); DOI: https://doi.org/10.1016/S1875-5372(18)30149-8.

    Article  Google Scholar 

  11. Y. Tan, Sh. Gao, Ch. Xiong, et al., “Nano-structured LSM-YSZ refined with PdO/ZrO2 oxygen electrode for intermediate temperature reversible solid oxide cells,” Int. J. Hydrogen Energy, 45(38), 19823 – 19830 (2020); DOI: https://doi.org/10.1016/j.ijhydene.2020.05.116.

    Article  CAS  Google Scholar 

  12. F. Marais, I. Sigalas, and D. Whitefield, “The effects of the addition of tetragonal-ZrO2 on the mechanical properties of MgAl2O4–ZrO2 composites,” Ceram. Int., 48(1), 563 – 568 (2022); DOI: https://doi.org/10.1016/j.ceramint.2021.09.134.

    Article  CAS  Google Scholar 

  13. S. Aati, Z. Akram, H. Ngo, et al., “Development of 3D printed resin reinforced with modified ZrO2 nanoparticles for long-term provisional dental restorations,” Dent. Mater., 37(6), e360 – e374 (2021); DOI: https://doi.org/10.1016/j.dental.2021.02.010.

    Article  CAS  PubMed  Google Scholar 

  14. B. Sathyaseelan, E. Manikandan, I. Baskaran, et al., “Studies on structural and optical properties of ZrO2 nanopowder for opto-electronic applications,” J. Alloys Compd., 694, 556 – 559 (2017); DOI: https://doi.org/10.1016/j.jallcom.2016.10.002.

    Article  CAS  Google Scholar 

  15. T. Norfauzi, A. Hadzley, U. Azlan, et al., “Fabrication and machining performance of ceramic cutting tool based on the Al2O3–ZrO2–Cr2O3 compositions,” J. Mater. Res. Technol., 8(6), 5114 – 5123 (2019); DOI: https://doi.org/10.1016/j.jmrt.2019.08.034.

    Article  CAS  Google Scholar 

  16. J. Gao, W. Su, X. Song, et al., “Post-mortem analysis of Cr2O3–Al2O3–ZrO2 refractory bricks used in an industrial opposed multi-burner gasifier,” Eng. Failure Anal., 134, 106017 (2022); DOI: https://doi.org/10.1016/j.engfailanal.2021.106017.

    Article  CAS  Google Scholar 

  17. Sh. Wang, W. Zhao, Y. Zhang, et al., “Interactions of Cr2O3–Al2O3–ZrO2 refractory with slags in an entrained-flow coal-water slurry gasifier,” Ceram. Int., 48(1), 1197 – 1207 (2022); DOI: https://doi.org/10.1016/j.ceramint.2021.09.205.

    Article  CAS  Google Scholar 

  18. W. Wang, L. Xue, T. Zhang, et al., “The influence of MgO/ZrO2/Al2O3 refractories on the refining process of Ti-containing steel based on kinetic study,” Ceram. Int., 46(11), Part A, 17561 – 17568 (2020); DOI: https://doi.org/10.1016/j.ceramint.2020.04.055.

  19. W. Wang, L. Xue, T. Zhang, et al., “Thermodynamic corrosion behavior of Al2O3, ZrO2 and MgO refractories in contact with high basicity refining slag,” Ceram. Int., 45(16), 20664 – 20673 (2019); DOI: https://doi.org/10.1016/j.ceramint.2019.07.049.

    Article  CAS  Google Scholar 

  20. C. Baudin and P. Pena, “The main role of the ZrO2–MgO–CaO and ZrO–MgO–CaO–SiO systems in the field of refractories,” Bol. Soc. Esp. Ceram. Vidrio, 61, Suppl. 1, S6 – S18 (2021); DOI: https://doi.org/10.1016/j.bsecv.2021.09.009.

    Article  CAS  Google Scholar 

  21. Z. Wang, K. Su, J. Gao, et al., “Preparation, microstructure and properties of Al2O3–ZrO2–C slide plate material in presence of nanoscale oxides,” Ceram. Int., 48(7), 10126 – 10135 (2021); DOI: https://doi.org/10.1016/j.ceramint.2021.12.223.

    Article  CAS  Google Scholar 

  22. A. Keyvani, M. Bahamirian, and B. Esmaeili, “Sol-gel synthesis and characterization of ZrO2 – 25 wt.% CeO2 – 2.5wt.% Y2O3 (CYSZ) nanoparticles,” Ceram. Int., 46(13), 21284 – 21291 (2020); DOI: https://doi.org/10.1016/j.ceramint.2020.05.219.

    Article  CAS  Google Scholar 

  23. Y. J. Xia, J. L. Song, D. N. Yuan, et al., “Synthesis and characterization of one-dimensional metal oxides: TiO2, CeO2, Y2O3-stabilized ZrO2 and SrTiO3,” Ceram. Int., 41(1), Part A, 533 – 545 (2015); DOI: https://doi.org/10.1016/j.ceramint.2014.08.102.

  24. W. S. Lee, S. W. Kim, B. H. Koo, et al., “Synthesis and microstructure of Y2O3-doped ZrO2–CeO2 composite nanoparticles by hydrothermal process,” Colloids Surf., A, 313/314, 100 – 104 (2008); DOI: https://doi.org/10.1016/j.colsurfa.2007.04.079.

  25. I. V. Kozerozhets, G. P. Panasyuk, E. A. Semenov, et al., “New approach to prepare the highly pure ceramic precursor for the sapphire synthesis,” Ceram. Int., 46(18), Part A, 28961 – 28968 (2020); DOI: https://doi.org/10.1016/j.ceramint.2020.08.067.

  26. P. M. Bazhin, E. V. Kostitsyna, A. P. Chizhikov, et al., “Synthesis and structure peculiarities of composite material based on Al2O3–ZrO2 hardened with W and WB particles,” J. Alloys Compd., 856, 157576 (2021); DOI: https://doi.org/10.1016/j.jallcom.2020.157576.

    Article  CAS  Google Scholar 

  27. A. M. Stolin, P. M. Bazhin, A. S. Konstantinov, et al., “Synthesis and characterization of Al2O3–ZrO2-based eutectic ceramic powder material dispersion-hardened with ZrB2 and WB particles prepared by SHS,” Ceram. Int., 44(12), 13815 – 13819 (2018); DOI: https://doi.org/10.1016/j.ceramint.2018.04.225.

    Article  CAS  Google Scholar 

  28. A. Bazhina, A. Chizhikov, A. Konstantinov, et al., “Structure, phase composition and mechanical characteristics of layered composite materials based on TiB/xTi-Al/α-Ti (x = 1, 1.5, 3) obtained by combustion and high-temperature shear deformation,” Mater. Sci. Eng., 858, Art. 144161 (2022); DOI: https://doi.org/10.1016/j.msea.2022.144161.

  29. A. D. Bazhina, A. S. Konstantinov, A. P. Chizhikov, et al., “Materials based on the MAX phases of the Ti-Al–C system obtained under combustion and high-temperature shear deformation,” Mater. Lett., 318, Art. 132196 (2022); DOI: https://doi.org/10.1016/j.matlet.2022.132196.

  30. A. P. Chizhikov and A. S. Konstantinov, “Production of ceramic plates based on Al2O3–TiB2 by free SHS compression,” Refract. Ind. Ceram., 62(1), 94 – 97 (2021); DOI: https://doi.org/10.1007/s11148-021-00565-w.

    Article  CAS  Google Scholar 

  31. I. V. Kozerozhets, G. P. Panasyuk, L. A. Azarova, et al., “Acquisition, properties, and application of nanosized magnesium oxide powders: An overview,” Theor. Found. Chem. Eng., 55, 1126 – 1132 (2021).

    Article  CAS  Google Scholar 

  32. A. Bazhina, A. Konstantinov, A. Chizhikov, et al., “Structure and mechanical characteristics of a layered composite material based on TiB/TiAl/Ti,” Ceram. Int., 48(10), 14295 – 14300 (2022); DOI: https://doi.org/10.1016/j.ceramint.2022.01.318.

    Article  CAS  Google Scholar 

  33. A. I. B. Rondao, E. N. S. Muccillo, R. Muccillo, et al., “On the electrochemical properties of Mg-PSZ: An overview,” J. Appl. Electrochem., 47, 1091 – 1113 (2017); DOI: https://doi.org/10.1007/s10800-017-1112-z.

    Article  CAS  Google Scholar 

  34. S. Ahmed, B. Li, and L. Zou, “Sintering of free-standing zirconia granules with different Y2O3 concentration,” Adv. Appl. Ceram., 119, 407 – 413 (2020); DOI: https://doi.org/10.1080/17436753.2020.1789941.

    Article  CAS  Google Scholar 

Download references

The research was supported by Russian Science Foundation Grant No. 22-79-10182; https://rscf.ru/project/22-79-10182/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. M. Bazhin.

Additional information

Based on materials from the XX International Conference of Refractory Workers and Metallurgists (May 18 – 19 2023 Moscow)

Translated from Novye Ogneupory, No. 7, pp. 17 – 22, July, 2023

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chizhikov, A.P., Konstantinov, A.S., Antipov, M.S. et al. Self-Propagating High-Temperature Synthesis of Composite Material Based on Stabilized Zirconium Oxide1. Refract Ind Ceram 64, 373–377 (2023). https://doi.org/10.1007/s11148-024-00855-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11148-024-00855-z

Keywords

Navigation