Skip to main content
Log in

Micromachining of a High-Density Current-Conducting Ceramic with the Use of Electrical-Discharge Machining. Part 2

  • Published:
Refractories and Industrial Ceramics Aims and scope

Production features of micromachining ceramic workpieces using electrical-discharge machining are studied. The effect of pulse duration, breakdown voltage, voltage gain factor, peak current strength, and working voltage for electrical-discharge machining of VOK71 ceramic workpieces on roughness at the bottom of a channel and electrode-tool end wear are established. A mechanism is proposed for surface formation with electrical-discharge machining of current-conducting ceramic and recommendations are formulated for improving micromachining efficiency for components of this material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. V. Kuzin, S. Grigoriev, S. Fedorov, and M. Fedorov, “Surface defects formation in grinding of silicon nitride ceramics,” Appl. Mechan. Mater., 752/753, 402 – 406 (2015).

    Article  Google Scholar 

  2. T. R. Ablyaz, A. M. Khanov, and V. V. Sevast’yanov, “Features of electrical-discharge machining of small conmponents,” Vestn. Samar. Nauch. Tsentra RAN, 13(4), 935 – 938 (2011).

    Google Scholar 

  3. I. Puertas and C. J. Luis, “A study on the electrical discharge machining of conductive ceramics,” J. Materials Process. Technol., No. 153 / 154, 1033 – 1038 (2004).

  4. L. Taichiu and D. Jianxin, “Mechanical surface treatments of electrodischarge machined (EDMed) ceramic composite for improved strength and reliability,” J. Europ. Ceram. Soc., 22, 545 – 550 (2002).

    Article  Google Scholar 

  5. E. Ferraris, D. Reynaerts, and B. Lauwers, “Micro-EDM process investigation and comparison performance of Al2O3 and ZrO2 based ceramic composites,” CIRP Annals — Manufact. Technol., 60, 235 – 238 (2011).

    Article  Google Scholar 

  6. K. Ho, S. T. Newman, S. Rahimifard, and R. D. Allen, “State of the art in wire electrical discharge machining (WEDM),” Internat. J. Machine Tools & Manufacture, 44, 1247 – 1259 (2004).

    Article  Google Scholar 

  7. S. N. Grigor’ev, V. V. Kuzin, S. Yu. Fedorov, et al., “Technological aspects of the electrical-discharge machining of small-diameter holes in a high-density ceramic. Part 1,” Refract. Indust. Ceram., 55, 330 – 334 (2015).

    Article  Google Scholar 

  8. S. N. Grigor’ev, V. V. Kuzin, S. Yu. Fedorov, et al., “Technological aspects of the electrical-discharge machining of small-diameter holes in a high-density ceramic. Part 2,” Refract. Indust. Ceram., 55, 469 – 472 (2015).

    Article  Google Scholar 

  9. S. N. Grigor’ev, V. V. Kuzin, S. Yu. Fedorov, et al., “Technological aspects of the electrical-discharge machining of small-diameter holes in a high-density ceramic. Part 3,” Refract. Indust. Ceram., 55, 540 – 544 (2015).

    Article  Google Scholar 

  10. V. V. Kuzin, S. Yu. Federov, Tibor Szalay, and Balázs Farkas, “Micromachining of a high-density current-conducting ceramic with the use of electrical-discharge machining. Part 1,” Novye Ogneupory, No. 3, 153 – 158 (2016).

  11. B. N. Zolotykh, “Physical nature of electronic machining of metals,”Coll. TsNIL Élektron (B. R. Lazarenko, editor), Izd. Akad. Nauk SSSR (1957).

  12. G. A. Gulyi, Scientific Bases of Pulsed Discharge Technology [in Russian] Naukova Dumka, Kiev (1990).

    Google Scholar 

  13. E. V. Krivitskii, Dynamics of Electrical Discharge in a Liquid [in Russian], Naukova Dumka, Kiev (1986).

    Google Scholar 

  14. P. P. Malyushevskii, Bases of Discharge Pulse Technology [in Russian], Naukova Dumka, Kiev (1983).

    Google Scholar 

  15. V. Ya. Ushakov, Pulsed Electrical Liquid Breakdown [In Russian], Izd. TPI, Tomsk (1975).

    Google Scholar 

  16. N. K. Foteev, Electrical-Discharge Machining Technology [in Russian] Mashinostroenie, Moscow (1980).

    Google Scholar 

  17. G. V. Samsonov and I. M. Mukha, “Features governing cathode wear during metal electrical-discharge machining,” Élektron. Obrab. Materialov., No. 3, 17 – 24 (1961).

  18. G. V. Samsonov, I. M. Mukha, and A. N. Krushinskii, “Choice of electrode materials in electrical-discharge machining,” Élektron. Obrab. Materialov., No. 1, 28 – 32 (1966).

  19. B. P. Saushkin, Physicochemical Machining Methods in Gas Turbine Engine Production [in Russian], Drofa, Moscow (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Kuzin.

Additional information

Part 1 of the article published in Novye Ogneupory No. 3 (2016).

Translated from Novye Ogneupory, No. 5, pp. 58 – 62, May, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuzin, V.V., Fedorov, S.Y., Szalay, T. et al. Micromachining of a High-Density Current-Conducting Ceramic with the Use of Electrical-Discharge Machining. Part 2. Refract Ind Ceram 57, 283–287 (2016). https://doi.org/10.1007/s11148-016-9969-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11148-016-9969-7

Keywords

Navigation