Skip to main content
Log in

A copula-based approach for generating lattices

  • Published:
Review of Derivatives Research Aims and scope Submit manuscript

Abstract

Discrete approximations such as binomial and trinomial lattices have been developed to model the intertemporal dynamics of variables in a way that also allows contingent decisions to be included at the appropriate increments in time. In this paper we present an approach for developing these types of models based on copulas. In addition to ease of implementation, a primary benefit of this approach is its generality, and we show that various binomial and trinomial approximation methods for valuing contingent claim securities in the literature are special cases of this approach, each based on a choice of a particular set of probability and/or branching parameters. Because this approach encompasses these and other cases as feasible solutions, we also show how it can be used to optimize the construction of lattices so that discretization error is minimized, and we demonstrate its application for an option pricing example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Andersen, T. G., & Bondarenko, O. (2007). Construction and interpretation of model-free implied volatility. In I. Nelken (Ed.), Volatility as an asset class (pp. 141–181). London: Risk Books.

    Google Scholar 

  • Barone-Adesi, G., Fusari, N., & Theal, J. (2008). Barrier Option pricing using adjusted transition probabilities. Journal of Derivatives, 16(2), 36–53.

    Article  Google Scholar 

  • Baule, R., & Wilkens, M. (2004). Lean trees–a general approach for improving performance of lattice models for option pricing. Review of Derivatives Research, 7(1), 53–72.

    Article  Google Scholar 

  • Britten-Johne, M., & Neuberer, A. (2000). Option prices, implied price processes, and stochastic volatility. Journal of Finance, 55, 839–866.

    Article  Google Scholar 

  • Black, F., & Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of Political Economy, 81, 637–659.

    Article  Google Scholar 

  • Bickel, J. Eric, Lake, L. W., & Lehman, J. (2011). Discretization, simulation, and Swanson’s (Inaccurate) mean. SPE Economics and Management, 3(3), 128–140.

    Article  Google Scholar 

  • Bizid, A., & Jouini, E. (2005). Equilibrium pricing in incomplete markets. The Journal of Financial and Quantitative Analysis, 40, 833–848.

    Article  Google Scholar 

  • Boyle, P. P. (1988). A lattice framework for option pricing with two state variables. The Journal of Financial and Quantitative Analysis, 35, 1–12.

    Article  Google Scholar 

  • Broadie, M., & Detemple, J. B. (2004). Option pricing: Valuation models and applications. Management Science, 50(9), 1145–1177.

    Article  Google Scholar 

  • Broadie, M., & Kaya, Ö. (2007). A binomial lattice method for pricing corporate debt and modeling chapter 11 proceedings. Journal of Financial and Quantitative Analysis, 42(02), 279–312.

    Article  Google Scholar 

  • Chambers, D. R., & Lu, Q. (2007). A tree model for pricing convertible bonds with equity, interest rate, and default risk. Journal of Derivatives, 14(4), 25–46.

    Article  Google Scholar 

  • Chen, R., & Yang, T. (1999). A universal lattice. Review of Derivatives Research, 3, 115–133.

    Article  Google Scholar 

  • Chung, S., & Shih, P. (2007). Generalized Cox-Ross-Rubinstein binomial model. Management Science, 53(3), 508–520.

    Article  Google Scholar 

  • Clewlow, L., & Strickland, C. (1998). Implementing derivative models. New York: Wiely.

    Google Scholar 

  • Costabile, M., Massabó, I., & Russo, E. (2011). A binomial approximation for two-state Markovian HJM models. Review of Derivatives Research, 14(1), 37–65.

    Article  Google Scholar 

  • Cox, J. C., Ross, S. A., & Rubinstein, M. (1979). Option pricing: A simplified approach. Journal of Financial Economics, 7, 229–264.

    Article  Google Scholar 

  • Derman, E., Kani, I., & Chriss, N. (1996). Implied trinomial trees of the volatility smile. Quantitative Strategies Research Notes, Goldman-Sachs.

  • Dumas, B., & Lyasoff, A. (2012). Incomplete-market equilibria solved recursively on an event tree. The Journal of Finance, 67, 1897–1941.

    Article  Google Scholar 

  • Fama, E. F. (1965). The behaviour of stock market prices. The Journal of Business, 38, 34–105.

    Article  Google Scholar 

  • Figlewski, S., & Gao, B. (1999). The adaptive mesh model: A new approach to efficient option pricing. Journal of Financial Economics, 53, 313–351.

    Article  Google Scholar 

  • Glasserman, P. (2003). Monte Carlo methods in financial engineering. Berlin: Springer.

    Book  Google Scholar 

  • Grigelionis, B. (2013). Student’s T-distribution and related stochastic processes. Berlin: Springer.

    Book  Google Scholar 

  • Grundy, B. D. (1991). Option prices and the underlying asset’s return distribution. Journal of Finance, 46, 1045–1069.

    Article  Google Scholar 

  • Hansen, P. R., & Lunde, A. (2006). Consistent ranking of volatility models. Journal of Econometrics, 131(1), 97–121.

    Article  Google Scholar 

  • He, H. (1990). Convergence from discrete- to continuous-time contingent claims prices. The Review of Financial Studies, 3, 523–546.

    Article  Google Scholar 

  • Hilliard, J. E., & Schwartz, A. (2005). Pricing European and American derivatives under a jump-diffusion process: A bivariate tree approach. The Journal of Financial and Quantitative Analysis, 40(3), 671–691.

    Article  Google Scholar 

  • Hull, J. (2006). Options futures and other derivatives (6th ed.). Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  • Jabbour, G. M., Kramin, M. V., & Young, S. D. (2010). Structural default modeling: A lattice-based approach. Journal of Derivatives, 17(4), 44–53.

    Article  Google Scholar 

  • Jarrow, R., & Rudd, A. (1983). Option pricing. Homewood: R.D. Irwin.

    Google Scholar 

  • Ji, D., & Brorsen, B. W. (2011). A recombining lattice option pricing model that relaxes the assumption of lognormality. Review of Derivatives Research, 14(3), 349–367.

    Article  Google Scholar 

  • Keefer, D., & Bodily, S. E. (1983). Three-point approximations for continuous random variables. Management Science, 29, 595–609.

    Article  Google Scholar 

  • Khaled, K., & Samia, M. (2010). Estimation of the parameters of the stochastic differential equations Black–Scholes model share price of gold. Journal of Mathematics and Statistics, 6(4), 421.

    Article  Google Scholar 

  • Megill, R. E. (1984). An introduction to risk analysis (2nd ed.). Tulsa: PennWell.

    Google Scholar 

  • Omberg, E. (1988). Efficient discrete time jump process models in option pricing. The Journal of Financial and Quantitative Analysis, 23, 161–174.

    Article  Google Scholar 

  • Parkinson, M. (1977). Option pricing: The American put. Journal of Business, 50, 21–36.

    Article  Google Scholar 

  • Pearson, E. S., & Tukey, J. W. (1965). Approximate means and standard deviations based on distances between percentage points of frequency curves. Biometrika, 52(3/4), 546–553.

    Article  Google Scholar 

  • Praetz, P. D. (1972). The distribution of share price changes. The Journal of Business, 45, 49–55.

    Article  Google Scholar 

  • Petroni, N. C., De Martino, S., De Siena, S., & Illuminati, F. (2006). Lévy-Student processes for a Stochastic model of Beam Halos. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 561(2), 237–243.

    Article  Google Scholar 

  • Poon, S. (2005). A practical guide to forecasting financial market volatility. London: John Wiley.

    Google Scholar 

  • Steele, J. M. (2010). Stochastic calculus and financial applications (Vol. 45). New York: Springer Science & Business Media.

    Google Scholar 

  • Tian, Y. (1993). A modified lattice approach to option pricing. Journal of Futures Markets, 13, 563–577.

    Article  Google Scholar 

  • Tian, Y. (1999). A flexible binomial option pricing model. Journal of Futures Markets, 19, 817–843.

    Article  Google Scholar 

  • Wang, T., & Dyer, J. (2012). A Copulas-based approach to modeling dependence in decision trees. Operations Research, 60, 225–242.

    Article  Google Scholar 

  • Widdicks, M., Andricopoulos, A. D., Newton, D. P., & Duck, P. W. (2002). On the enhanced convergence of lattice methods for option pricing. Journal of Futures Markets, 22(4), 315–338.

    Article  Google Scholar 

  • Zhu, D., & Galbraith, J. W. (2010). A generalized asymmetric student-t distribution with application to financial econometrics. Journal of Econometrics, 157(2), 297–305.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianyang Wang.

Appendices

Appendix 1

For convenience, we will prove Part b of Theorem 1 first:

We can show the moments of \(x\left( t\right) =\ln \left( S\left( t\right) \right) \) are a function of the moments of W(t) by using moment generating functions. The moment generating function of the normal distribution \(X\sim N\left( \mu , \sigma ^{2}\right) \) is given as \(M_{X}\left( z \right) ={\mathrm {exp}}(\mu z+\frac{1}{2}\sigma ^{2}z^{2})\). If \(W\left( t \right) \sim N(0,t)\), then \(\sigma W\left( t\right) \sim N(0,\sigma ^{2}t)\), and therefore, \(M_{W\left( t \right) }\left( z\right) =\exp \left( \frac{1}{2}tz^{2}\right) ,\) and \(M_{\sigma W\left( t\right) }\left( z \right) ={\mathrm {exp}}(\frac{1}{2}\sigma ^{2}tz^{2})\)

We now focus on the log-transformed asset price. For \(x\left( t \right) =\ln \left( S\left( t\right) \right) \sim N(\ln {\left( S\left( 0 \right) \right) +\nu t,\sigma ^{2}t})\), we will provide the derivation of its moment generating function.

$$\begin{aligned} M_{x\left( t\right) }\left( z\right)= & {} {\mathrm {e}}^{\left( \ln \left( S\left( 0 \right) \right) +\nu t\right) z+\frac{1}{2}\sigma ^{2}tz^{2}}=\hbox {e}^{\left( \ln \left( S\left( 0\right) \right) + \nu \right) z}{\mathrm {e}}^{\frac{1}{2}\sigma ^{2}tz^{2}}\\= & {} \hbox {e}^{\left( \ln \left( S\left( 0 \right) \right) + \nu \right) z}{\mathrm {e}}^{\left( \frac{1}{2}tz^{2}\right) \sigma ^{2}} =\hbox {e}^{\left( \ln \left( S\left( 0\right) \right) + \nu \right) z}\left( M_{W\left( t \right) }\left( z\right) \right) ^{\sigma ^{2}}\\= & {} \hbox {e}^{\left( \ln \left( S\left( 0 \right) \right) + \nu \right) z}{M_{\sigma W\left( t\right) }\left( z\right) } \end{aligned}$$

The following equation can be obtained using the Taylor expansion operation on \({\mathrm {e}}^{[\ln {\left( S\left( 0\right) \right) +\nu t]}z}\):

$$\begin{aligned} {\mathrm {e}}^{(\ln \left( S\left( 0\right) \right) +\nu )z}=1+(\ln \left( S\left( 0\right) \right) +\nu )z+\frac{((\ln \left( S\left( 0\right) \right) +\nu )z)^{2}}{2!}+\cdots \end{aligned}$$

which simplifies to

$$\begin{aligned} M_{x\left( t\right) }\left( z\right) =\left[ 1+(\ln {\left( S\left( 0\right) \right) +\nu t)}z+\frac{{\left( \ln \left( S\left( 0\right) \right) +\nu t\right) }^{2}z^{2}}{2!}+\cdots \right] {\times M}_{\sigma W\left( t\right) }\left( z\right) \end{aligned}$$

If the moment generating function exists on an open interval around \(\hbox {t} = 0\), then it is the exponential generating function of the moments of the probability distribution:

$$\begin{aligned} E\left( X^{n}\right) =M^{\left( n\right) }_{X}\left( 0 \right) =\frac{d^{n}M_{X}}{dz^{n}}\left( 0\right) \end{aligned}$$

Performing the \(\hbox {n}{\mathrm{th}}\) derivatives on the moment generating function of \(x\left( t\right) \)

$$\begin{aligned} E\left( {x\left( t\right) }^{n}\right)= & {} M^{\left( n\right) }_{x\left( t \right) }\left( 0\right) \\= & {} \frac{d^{n}\left[ 1+\left( \ln \left( S\left( 0\right) \right) +\nu t\right) z+\frac{{(\ln {\left( S\left( 0\right) \right) +\nu t)}}^{2}z^{2}}{2!}+\cdots \right] }{dz^{n}}*M_{\sigma W\left( t \right) }\left( z\right) \vert _{z=0}\\&+\cdots \cdots +\left[ 1+(\ln {\left( S\left( 0\right) \right) +\nu t)}z+\frac{{(\ln {\left( S\left( 0\right) \right) +\nu t)}}^{2}z^{2}}{2!}+\cdots \right] \vert _{z=0}\\&\times \,M^{\left( n \right) }_{\sigma W\left( t\right) }\left( 0\right) \\= & {} cE\left( \left( \sigma W\left( t\right) \right) ^{n}\right) \\= & {} {(\ln {\left( S\left( 0\right) \right) +\nu t)}}^{n}+\left[ 1+(\ln {\left( S\left( 0\right) \right) +\nu t)}z\right. \\&\left. +\frac{{(\ln {\left( S\left( 0\right) \right) +\nu t)}}^{2}z^{2}}{2!}+\cdots \right] \vert _{z=0}\\&\times \,M^{\left( n \right) }_{\sigma W\left( t\right) }\left( 0\right) =(\ln \left( S\left( 0 \right) \right) +\nu t)^{n}+E\left( \left( \sigma W\left( t \right) \right) ^{n}\right) \\= & {} {\left( \ln \left( S\left( 0\right) \right) +\nu t\right) }^{n}+\sigma ^{n}E\left( {(W\left( t\right) )}^{n}\right) \end{aligned}$$

Notice that the Taylor expansion only serves as an auxiliary step in the proof. The equation is exact and no approximation is required.

Proof of Part a:

By the definition of a moment generating function, \(M_{x\left( t \right) }\left( z\right) =E\left( {\mathrm {e}}^{x\left( t\right) z} \right) \). Since \(x\left( t\right) =\ln \left( S\left( t\right) \right) \), \(M_{x\left( t\right) }\left( z\right) =E \left( {\mathrm {e}}^{x\left( t\right) z}\right) =E\left( {\mathrm {e}}^{\ln \left( S\left( t\right) \right) z}\right) =E({S\left( t\right) }^{z})\). Therefore, \(E\left( {S\left( t\right) }^{n}\right) =M_{x\left( t \right) }\left( n\right) \). From the proof of Part b, we know that

$$\begin{aligned} E\left( {S\left( t\right) }^{n}\right)= & {} M_{x\left( t\right) }\left( n \right) =\hbox {e}^{(\ln {\left( S\left( 0\right) \right) + \nu t)}n}{M_{\sigma W\left( t\right) }\left( n\right) }={S\left( 0 \right) }^{n}{\mathrm {e}}^{\nu tn}{\times \,M}_{\sigma W\left( t \right) }\left( n\right) \\= & {} {S\left( 0\right) }^{n}{\mathrm {e}}^{\nu tn}\times \left( M_{W\left( t\right) }\left( z\right) \right) ^{\sigma ^{2}} \end{aligned}$$

\(\square \)

Appendix 2

RMSE is used as a goodness-of-fit measure for the CDF of the constructed trinomial lattice at the final stage in comparison to the theoretical underlying distributions. In this case, it can be shown that for overall distribution fit based on optimization of RMSE, the optimal \(\upalpha _{1}\) and thence the lattice structure is independent of parameters of the underlying GBM process.

$$\begin{aligned} {\mathrm {RMSE}}= & {} \left( {\mathrm {MSE}}\right) ^{\frac{1}{2}}\\ {\mathrm {MSE}}= & {} \sum \limits _j {p_{T,j}\left( {CDF}^{ lattice}\left( S_{T,j}\right) -{CDF}^{theoretical}\left( S_{T,j}\right) \right) ^{2}, j=0,\ldots ,2T} \end{aligned}$$

Since the lattice of the GBM process is transferred from the underlying Wiener process, \({{CDF}^{ lattice}(S}_{T,j})={{CDF}^{ lattice}(W}_{T,j})= \sum \nolimits _i^{W_{T,i}\le W_{T,j}} p_{T,i}\).

Therefore, either \(p_{T,j}\) or \({CDF}^{ lattice}(S_{T,j})\) is a function of parameters of the underlying GBM process. If \({CDF}^{ theoretical}(S_{T,j})\) is also independent of parameters of the underlying GBM process, then MSE hence RMSE is independent of parameters of the underlying GBM process.

Since the CDF of the lognormal distribution is the same as the CDF of the normal distribution, with log x substituted for x,

$$\begin{aligned}&\hbox {CDF}_{ lognormal}(x) = \hbox {CDF}_{ normal}(\hbox {log} x)\\&{CDF}^{ theoretical}(S_{T,j})= {CDF}^{ theoretical}({\mathrm {ln}}(S_{T,j}))\\&\ln \left( S\left( T\right) \right) \sim N(\ln {\left( S\left( 0\right) \right) +\nu T,\sigma ^{2}T}), \hbox {and}\\&{\mathrm {ln}}(S_{T,j})=S\left( 0\right) +\nu T+\sigma {\sqrt{T} {\mathrm {W}}}_{T,j}\\&{CDF}^{ theoretical}(S_{T,j})= {CDF}^{ theoretical}({\mathrm {ln}}(S_{T,j}))\\&\quad = {CDF}^{ theoretical}\left( \frac{S\left( 0\right) +\nu T+\sigma {\sqrt{T} {\mathrm {W}}}_{T,j}-\left( S\left( 0\right) +\nu T \right) }{\sigma \sqrt{T}} \right) \\&\quad ={CDF}^{ theoretical}({\mathrm {W}}_{T,j}). \end{aligned}$$

Therefore, RMSE of the CDF of the constructed trinomial lattice at the final stage in comparison to the theoretical underlying distributions is independent of parameters of the underlying GBM process, so is the optimal \(\upalpha _{1}\) for overall distribution fit optimization of RMSE.

Appendix 3

If RMSE is used as a goodness-of-fit measure for option price (e.g, call option price) from the constructed trinomial lattice at the final stage in comparison to the theoretical BSM model, the optimal lattice structure is dependent on the parameters of the underlying GBM process.

$$\begin{aligned} {\mathrm {RMSE}}= & {} \left( {\mathrm {MSE}}\right) ^{\frac{1}{2}}\\ {\mathrm {MSE}}= & {} \sum \nolimits _j {p_{T,j}\left( {Max(0,S}_{T,j}-K)-{BS(S}_{0},K,r,\delta ,\sigma ,T)\right) ^{2}} , j=0,\ldots ,2T, \end{aligned}$$

and,

$$\begin{aligned} S_{T,j}=e^{S\left( 0\right) +\nu T+\sigma {\sqrt{T} {\mathrm {W}}}_{T,j}} \end{aligned}$$

Similarly, if \({\mathrm {RMSE}}_{\Delta }\) is used as a goodness-of-fit measure for Greeks of option price (e.g, Delta) from the constructed trinomial lattice at the final stage in comparison to the theoretical BSM model, the optimal lattice structure is dependent on the parameters of the underlying GBM process.

$$\begin{aligned} {\mathrm {RMSE}}_{\Delta }= & {} \left( {\mathrm {MSE}}_{\Delta } \right) ^{\frac{1}{2}}\\ {\mathrm {MSE}}_{\Delta }= & {} \frac{C_{T,2T}-C_{T,0}}{S_{T,2T} -S_{T,0}}-e^{-\delta T}N(d_{1})\\ \!= & {} \!\left( \frac{Max\left( 0,S_{T,2T}-K\right) \!-\!Max\left( 0,S_{T,0} -K\right) }{S_{T,2T}-S_{T,0}}\!-\!\Delta _{BS}\left( S_{0},K,r,\delta ,\sigma ,T\right) \right) ^{2} \end{aligned}$$

and,

$$\begin{aligned} d_{1}=\frac{\ln \left( \frac{S_{0}}{K} \right) +vT}{\sigma \sqrt{T}},S_{T,j}=e^{S\left( 0 \right) +\nu T+\sigma {\sqrt{T} {\mathrm {W}}}_{T,j}}, j=0,\ldots ,2T, \end{aligned}$$

Therefore, we know that RMSE \(({\mathrm {RMSE}}_{\Delta })\) will be a function of the parameters of the underlying GBM process. The relationship between the optimal RMSE \(({\mathrm {RMSE}}_{\Delta })\) and the parameters of the underlying GBM process are complex as illustrated in Sect. 4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Dyer, J.S. & Hahn, W.J. A copula-based approach for generating lattices. Rev Deriv Res 18, 263–289 (2015). https://doi.org/10.1007/s11147-015-9111-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11147-015-9111-x

Keywords

JEL Classification

Navigation