Skip to main content
Log in

Local volatility of volatility for the VIX market

  • Published:
Review of Derivatives Research Aims and scope Submit manuscript

Abstract

Following a trend of sustained and accelerated growth, the VIX futures and options market has become a closely followed, active and liquid market. The standard stochastic volatility models—which focus on the modeling of instantaneous variance—are unable to fit the entire term structure of VIX futures as well as the entire VIX options surface. In contrast, we propose to model directly the VIX index, in a mean-reverting local volatility-of-volatility model, which will provide a global fit to the VIX market. We then show how to construct the local volatility-of-volatility surface by adapting the ideas in Carr (Local variance gamma. Bloomberg Quant Research, New York, 2008) and Andreasen and Huge (Risk Mag 76–79, 2011) to a mean-reverting process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Note: VIX futures contracts have a multiplier of 1000 while VIX options contracts have a multiplier of 100. Therefore, futures contracts volumes are multiplied by a factor \(10\!\times \), to make them comparable to options contracts volume.

  2. We note that the function \(\lambda (\cdot , \cdot )\) is the same function as in Eq. (1) of the previous section, only the notation of the arguments may differ depending on the context.

  3. Note that the shrinkage problem is not alleviated by working in log-strikes:

    $$\begin{aligned} \lim _{\Delta K \rightarrow 0} \log \left( \frac{\theta + (K_2 - \theta ) e^{-k(T_N-T_1)}}{\theta + (K_1 - \theta ) e^{-k(T_N-T_1)}} \right) \Big / \log \left( \frac{K_2}{K_1} \right) = e^{-k(T_N-T_1)} \cdot \frac{K_1}{\theta + (K_1 - \theta ) e^{-k(T_N-T_1)}}. \end{aligned}$$

References

  • Andersen, L., & Brotherton-Ratcliffe, R. (1998). The equity option volatility smile: An implicit finite-difference approach. Journal of Computational, Finance, 1(2), 5–37.

    Google Scholar 

  • Andersen, L., & Andreasen, J. (2000). Jump diffusion processes: Volatility smile fitting and numerical methods for options pricing. Review of Derivatives Research, 4(3), 231–262.

    Article  Google Scholar 

  • Andreasen, J., & Huge, B. (2011). Volatility interpolation. Risk Magazine, pp. 76–79.

  • Bergomi, L. (2005). Smile dynamics 2. Risk Magazine, pp. 67–73.

  • Bergomi, L. (2008). Smile dynamics 3. Risk Magazine, pp. 90–96.

  • Black, F., & Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of Political Economy, 81, 637–654.

    Article  Google Scholar 

  • Carr, P., & Madan, D. (1998). Towards a theory of volatility trading. In R. Jarrow (Ed.), Volatility: New estimation techniques for pricing derivatives (pp. 417–427). London: Risk Books.

    Google Scholar 

  • Carr, P., & Sun, J. (2007). A new approach for option pricing under stochastic volatility. Review of Derivatives Research, 10, 87–150.

    Article  Google Scholar 

  • Carr, P. (2008). Local Variance gamma, working paper. New York: Bloomberg Quant Research.

  • Cont, R., & Kokholm, T. (forthcoming, 2011). A consistent pricing model for index options and volatility derivatives. Mathematical Finance.

  • Derman, E., & Kani, I. (1994). Riding on a smile. Risk Magazine, 7(2), 32–39.

    Google Scholar 

  • Dupire, B. (1993). Model art. Risk Magazine, 6(9), 118–124.

    Google Scholar 

  • Dupire, B. (1994). Pricing with a smile. Risk Magazine, 7(1), 18–20.

    Google Scholar 

  • Eberlein, E., & Madan, D. (2009). Sato processes and the valuation of structured products. Quantitative Finance, 9(1), 27–42.

    Article  Google Scholar 

  • Fengler, M. (2009). Arbitrage-free smoothing of the implied volatility surface. Quantitative Finance, 9(4), 417–428.

    Article  Google Scholar 

  • Heston, S. (1993). A closed-form solution for options with stochastic volatility with applications to bond and currency options. The Review of Financial Studies, 6, 327–343.

    Article  Google Scholar 

  • Jeanblanc, M., Yor, M., & Chesney, M. (2009). Mathematical methods for financial markets. London: Springer Finance.

    Book  Google Scholar 

  • Lewis, A. (2000). Option valuation under stochastic volatility. Newport Beach, CA: Finance Press.

    Google Scholar 

  • Neuberger, A. (1994). The log contract. Journal of Portfolio Management, 20, 2.

    Article  Google Scholar 

  • Scott, L. (1987). Option pricing when the variance changes randomly: Theory, estimation and an application. Journal of Financial and Quantitative Analysis, 22, 419–438.

    Article  Google Scholar 

  • Szado, E. (2009). VIX futures and options: A case study of portfolio diversification during the 2008 financial crisis. Journal of Alternative Investments, 12(2), 68–85.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Drimus.

Appendices

Appendix I

Proof of Proposition 2.1

Denote \(\rho (V, T)\) the density of \(V_T\). We have

$$\begin{aligned} C(K, T) = e^{-r T} \int \limits _K^{\infty } (V - K) \cdot \rho (V, T) dV \end{aligned}$$
(29)

from where, differentiating with respect to strike \(K\) twice

$$\begin{aligned} \frac{\partial C}{\partial K} (K, T)&= - e^{-rT} \int \limits _K^{\infty } \rho (V,T) dV \\ \frac{\partial ^2 C}{\partial K^2} (K, T)&= e^{-rT} \rho (K,T). \end{aligned}$$

Recall Kolmogorov’s forward equation for \(\rho (V,T)\), see e.g. Jeanblanc et al. (2009):

$$\begin{aligned} \frac{\partial \rho }{\partial T} (V,T) = - \frac{\partial }{\partial V} \Big [ k \left( \theta (T) - V \right) \cdot \rho (V,T) \Big ] + \frac{1}{2} \frac{\partial ^2}{\partial V^2} \Big [ V^2 \cdot \lambda (V,T)^2 \cdot \rho (V,T) \Big ]. \nonumber \\ \end{aligned}$$
(30)

Differentiating both sides of (29) with respect to maturity \(T\) and using (30)

$$\begin{aligned} \frac{\partial C}{\partial T}&= -rC + e^{-rT} \Bigg [ -\int \limits _K^{\infty } (V-K) \cdot \frac{\partial }{\partial V} \Big [ k \left( \theta (T) - V \right) \cdot \rho (V,T) \Big ] dV \nonumber \\&\quad + \frac{1}{2} \int \limits _K^{\infty } (V-K) \cdot \frac{\partial ^2}{\partial V^2} \Big [ V^2 \cdot \lambda (V,T)^2 \cdot \rho (V,T) \Big ] dV \Bigg ] \end{aligned}$$
(31)

Denoting the two terms in the parenthesis by \(A\), respectively \(B\), we proceed to compute each in turn, using integration by parts. The first term becomes

$$\begin{aligned} A&= - (V-K) \cdot \Big [ k \left( \theta (T) - V \right) \cdot \rho (V,T) \Big ] \Bigg |_K^{\infty } + \int \limits _K^{\infty } k \left( \theta (T) - V \right) \cdot \rho (V,T) dV \\&= \int \limits _K^{\infty } k \left( \theta (T) - K - (V-K) \right) \cdot \rho (V,T) dV \\&= k \left( \theta (T) - K \right) \cdot \int \limits _K^{\infty } \rho (V,T) dV - k \int \limits _K^{\infty } (V-K) \cdot \rho (V,T) dV \\&= e^{rT} \Big [ - k \left( \theta (T) - K \right) \cdot \frac{\partial C}{\partial K} (K,T) - k \cdot C(K,T) \Big ] \end{aligned}$$

where we have assumed that the boundary term, on the first line, vanishes at \(K=+\infty \). The second term becomes

$$\begin{aligned} B\;=\;\frac{1}{2} (V\!-\!K) \cdot \frac{\partial }{\partial V} \Big [ V^2 \cdot \lambda (V,T)^2 \!\cdot \! \rho (V,T) \Big ] \Bigg |_K^{\infty } \\&- \frac{1}{2} \int \limits _K^{\infty } \frac{\partial }{\partial V} \Big [ V^2 \cdot \lambda (V,T)^2 \cdot \rho (V,T) \Big ] dV = - \frac{1}{2} V^2 \cdot \lambda (V,T)^2 \cdot \rho (V,T) \Bigg |_K^{\infty }\\&= \frac{1}{2} K^2 \cdot \lambda (K,T)^2 \cdot \frac{\partial ^2 C}{\partial K^2} (K, T). \end{aligned}$$

where we have assumed that the boundary terms vanish at \(K=+\infty \). Using the expressions for \(A\) and \(B\) in (31), we obtain

$$\begin{aligned} \frac{\partial C}{\partial T}&= -rC - k \left( \theta (T) - K \right) \cdot \frac{\partial C}{\partial K} - k \cdot C + \frac{1}{2} K^2 \cdot \lambda (K,T)^2 \cdot \frac{\partial ^2 C}{\partial K^2} \end{aligned}$$

which, upon rearrangement, leads to the statement in Proposition 2.1.

Proof of Proposition 2.2

We will find it convenient to work with the undiscounted Black function. Also, noting that, for \( T \in [T_{i-1}, T_i]\), the futures price \(F_0^T\) can be written as

$$\begin{aligned} F_0^T = \theta _i + e^{-k(T-T_{i-1})} \left( F_0^{T_{i-1}} - \theta _i \right) \end{aligned}$$

the definition of the Black implied volatility surface becomes

$$\begin{aligned} e^{rT} \widetilde{C} (x, T) \stackrel{\triangle }{=} C^B \left( \theta _i + e^{-k(T-T_{i-1})} \left( F_0^{T_{i-1}} - \theta _i \right), V_0 e^x, T, \sigma (x, T) \right). \end{aligned}$$
(32)

For easier reference, we recall below the Black greeks which will be needed in our subsequent calculations:

$$\begin{aligned} \begin{array}{lll} \frac{\partial C^B}{\partial F} = N(d_1)&\frac{\partial C^B}{\partial K} = - N(d_2)&\frac{\partial C^B}{\partial T} = \frac{F \sigma n(d_1)}{2 \sqrt{T}} \\ \frac{\partial C^B}{\partial \sigma } = F \sqrt{T} n(d_1)&\frac{\partial ^2 C^B}{\partial K^2} = \frac{F n(d_1)}{\sigma \sqrt{T} K^2}&\frac{\partial ^2 C^B}{\partial \sigma \partial K} = \frac{F d_1 n(d_1)}{\sigma K} \\ \frac{\partial ^2 C^B}{\partial \sigma ^2} = F \sqrt{T} n(d_1) \frac{d_1 d_2}{\sigma }&\,&\end{array} \end{aligned}$$

From (32)

$$\begin{aligned} e^{rT} \frac{\partial \widetilde{C}}{\partial T}&= \!-\!re^{rT} \widetilde{C} \!+\! \frac{\partial C^B}{\partial F} \cdot \frac{\partial F_0^T}{\partial T} \!+\! \frac{\partial C^B}{\partial T} \!+\! \frac{\partial C^B}{\partial \sigma } \cdot \frac{\partial }{\partial T} \sigma (x, T) \nonumber \\&= \!-\!re^{rT} \widetilde{C} \!-\! k e^{\!-\!k(T\!-\!T_{i\!-\!1})} \left( F_0^{T_{i\!-\!1}} \!-\! \theta _i \right) \cdot N(d_1) \!+\! \frac{F_0^T \sigma (x,T) n(d_1)}{2 \sqrt{T}} \nonumber \\&\!+\! F_0^T \sqrt{T} n(d_1) \frac{\partial }{\partial T} \sigma (x, T). \end{aligned}$$
(33)
$$\begin{aligned} e^{rT} \frac{\partial \widetilde{C}}{\partial x}&= \frac{\partial C^B}{\partial K} \cdot V_0 e^{x} \!+\! \frac{\partial C^B}{\partial \sigma } \cdot \frac{\partial }{\partial x} \sigma (x, T) \nonumber \\&= \!-\! N(d_2) \cdot V_0 e^{x} \!+\! F_0^T \sqrt{T} n(d_1) \frac{\partial }{\partial x} \sigma (x, T). \end{aligned}$$
(34)
$$\begin{aligned} e^{rT} \frac{\partial ^2 \widetilde{C}}{\partial x^2}&= \left( \frac{\partial ^2 C^B}{\partial K^2} \cdot V_0 e^{x} \!+\! \frac{\partial ^2 C^B}{\partial \sigma \partial K} \cdot \frac{\partial }{\partial x} \sigma (x, T) \right) V_0 e^{x} \!+\! \frac{\partial C^B}{\partial K} \cdot V_0 e^{x} \nonumber \\&\!+\! \left( \frac{\partial ^2 C^B}{\partial \sigma \partial K} \cdot V_0 e^{x} \!+\! \frac{\partial ^2 C^B}{\partial \sigma ^2} \cdot \frac{\partial }{\partial x} \sigma (x, T) \right) \frac{\partial }{\partial x} \sigma (x, T) \!+\! \frac{\partial C^B}{\partial \sigma } \frac{\partial ^2 \sigma }{\partial x^2}(x,T) \nonumber \\&= \frac{F_0^T n(d_1)}{\sigma (x, T) \sqrt{T}} \!+\! 2 \frac{F_0^T d_1 n(d_1)}{\sigma (x,T)} \frac{\partial }{\partial x} \sigma (x, T) \!+\! F_0^T \sqrt{T} n(d_1) \frac{d_1 d_2}{\sigma (x, T)} \left( \frac{\partial }{\partial x} \sigma (x, T) \right)^2 \nonumber \\&\!-\! N(d_2) V_0 e^{x} \!+\! F_0^T \sqrt{T} n(d_1) \frac{\partial ^2}{\partial x^2} \sigma (x, T). \end{aligned}$$
(35)

Using the expressions in (33), (34) and (35), we obtain for the numerator of Eq. (5)

$$\begin{aligned}&\frac{\partial \widetilde{C}}{\partial T} + k \left( \theta _i - V_0 e^{x} \right) \frac{1}{V_0 e^{x}} \frac{\partial \widetilde{C}}{\partial x} + (r+k) \widetilde{C} = e^{-rT} \Bigg [ k \theta _i \Big ( N(d_1) - N(d_2) \Big ) \nonumber \\&+ F_0^T n(d_1) \Bigg ( \frac{\sigma (x, T) }{2 \sqrt{T}} + \sqrt{T} \cdot \frac{\partial }{\partial T} \sigma (x, T)+\frac{k \left( \theta _i - V_0 e^x \right) \sqrt{T}}{V_0 e^x} \cdot \frac{\partial }{\partial x} \sigma (x, T) \Bigg ) \Bigg ] \nonumber \\&\end{aligned}$$
(36)

and for the denominator of Eq. (5)

$$\begin{aligned}&\frac{1}{2} \cdot \left( \frac{\partial ^2 \widetilde{C}}{\partial x^2} - \frac{\partial \widetilde{C}}{\partial x} \right) \!=\! e^{-rT} \frac{F_0^T}{2} n(d_1) \Bigg [ \frac{1}{\sigma (x, T) \sqrt{T}} + \left( \frac{2d_1}{\sigma (x, T)} - \sqrt{T} \right) \cdot \frac{\partial }{\partial x} \sigma (x, T) \nonumber \\&+ \frac{\sqrt{T} d_1 d_2}{\sigma (x, T)} \cdot \left( \frac{\partial }{\partial x} \sigma (x, T) \right)^2 + \sqrt{T} \cdot \frac{\partial ^2}{\partial x^2} \sigma (x, T) \Bigg ]. \end{aligned}$$
(37)

Finally, combining (36) and (37), we arrive at the statement in Proposition 2.2. \(\square \)

Proof of Lemma 3.1

The butterfly spread condition (11) is immediate, as the payoff of a butterfly is strictly positive. For the calendar spread condition (10), we consider the VIX futures of maturity \(T_2\), given by \(F_t^{T_2} = E \left( V_{T_2} | \mathcal F _t \right)\), which is a martingale on \([0, T_2]\). By the conditional form of Jensen’s inequality

$$\begin{aligned} E \left( \left( F_{T_2}^{T_2} - K \right)_+ \Big | \mathcal F _{T_1} \right)&\ge \left( E\left(F_{T_2}^{T_2} \Big | \mathcal F _{T_1} \right) - K \right)_+ \ge \left( F_{T_1}^{T_2} - K \right)_+ \end{aligned}$$

which in turn implies

$$\begin{aligned} E \left( F_{T_2}^{T_2} - K \right)_+&\ge E \left( F_{T_1}^{T_2} - K \right)_+ . \end{aligned}$$

Using that

$$\begin{aligned} F_{T_1}^{T_2}&= e^{-k(T_2-T_1)} \cdot V_{T_1} + e^{-k T_2} \int \limits _{T_1}^{T_2}k e^{kt} \theta (t) dt \\ F_{T_2}^{T_2}&= V_{T_2} \end{aligned}$$

where the first relation follows by applying Itô to the process \(e^{kt} V_t\) on \([T_1, T_2]\), we obtain

$$\begin{aligned} E \left( V_{T_2} - K \right)_+&\ge E \left( e^{-k(T_2-T_1)} \cdot V_{T_1} + e^{-k T_2} \int \limits _{T_1}^{T_2}k e^{kt} \theta (t) dt - K \right)_+ \\&= e^{-k(T_2-T_1)} \cdot E \left[ V_{T_1} - \left( K e^{k(T_2-T_1)} - e^{-k T_1} \int \limits _{T_1}^{T_2} k e^{kt} \theta (t) dt \right) \right]_+ . \end{aligned}$$

Equivalently, this can be written as

$$\begin{aligned} e^{r T_2} \cdot C (K, T_2) \ge e^{-k(T_2-T_1)} \cdot e^{rT_1} \cdot C \left( K e^{k(T_2-T_1)} - e^{-k T_1} \int \limits _{T_1}^{T_2} k e^{kt} \theta (t) dt , T_1 \right) \end{aligned}$$

which leads to the statement in Lemma 3.1.\(\square \)

Appendix II: VIX futures and options quotes

We include below CBOE’s VIX futures and options quotes as of the close of trading on Jul-05-2011, when 6 maturities were listed: Jul-20-2011, Aug-17-2011, Sep-21-2011, Oct-19-2011, Nov-16-2011 and Dec-21-2011. The VIX spot closed at 16.06 and the term structure of VIX futures as well as the VIX Put / Call quotes are given in the following tables.

VIX futures term structure

Maturity

07/20/2011

08/17/2011

09/21/2011

10/19/2011

11/16/2011

12/21/2011

VIX futures

16.95

18.10

20.00

21.00

21.60

21.85

Maturity Jul-20-2011

Strike

15

16

17

18

19

20

21

24

25

29

Bid

0.05

0.4

1

0.7

0.5

0.4

0.35

0.15

0.15

0.05

Offer

0.1

0.45

1.05

0.75

0.55

0.5

0.4

0.25

0.2

0.1

Type

P

P

P

C

C

C

C

C

C

C

Maturity Aug-17-2011

Strike

14

15

16

17

18

19

20

21

24

25

30

35

40

50

Bid

0.05

0.25

0.6

1.15

1.8

1.6

1.4

1.2

0.8

0.75

0.45

0.25

0.15

0.05

Offer

0.1

0.3

0.65

1.25

1.9

1.7

1.45

1.3

0.9

0.8

0.5

0.35

0.2

0.1

Type

P

P

P

P

P

C

C

C

C

C

C

C

C

C

Maturity Sep-21-2011

Strike

15

16

17

18

19

20

21

24

25

30

35

40

45

50

Bid

0.15

0.45

0.8

1.35

1.9

2.55

2.2

1.6

1.45

0.85

0.55

0.3

0.2

0.1

Offer

0.25

0.5

0.9

1.4

2

2.65

2.4

1.75

1.55

1

0.65

0.4

0.25

0.2

Type

P

P

P

P

P

P

C

C

C

C

C

C

C

C

Maturity Oct-19-2011

Strike

16

17

18

19

20

21

24

25

30

35

40

50

Bid

0.35

0.7

1.1

1.6

2.15

2.8

2

1.85

1.15

0.75

0.45

0.15

Offer

0.45

0.75

1.2

1.7

2.3

2.9

2.15

1.95

1.25

0.8

0.55

0.25

Type

P

P

P

P

P

C

C

C

C

C

C

C

Maturity Nov-16-2011

Strike

16

17

18

19

20

21

24

25

30

35

40

45

50

70

Bid

0.35

0.6

1

1.45

2

2.65

2.25

2.05

1.25

0.75

0.5

0.3

0.2

0.05

Offer

0.45

0.75

1.1

1.6

2.15

2.75

2.45

2.2

1.4

0.9

0.6

0.4

0.3

0.1

Type

P

P

P

P

P

P

C

C

C

C

C

C

C

C

Maturity Dec-21-2011

Strike

16

17

18

19

20

21

24

25

26

29

30

40

70

Bid

0.35

0.7

1.1

1.5

2.05

2.6

2.5

2.25

2.05

1.5

1.35

0.55

0.05

Offer

0.55

0.9

1.25

1.7

2.25

2.85

2.7

2.45

2.25

1.7

1.55

0.7

0.15

Type

P

P

P

P

P

P

C

C

C

C

C

C

C

We include below CBOE’s VIX futures and options quotes as of the close of trading on Sep-06-2012, when 6 maturities were listed: Sep-19-2012, Oct-17-2012, Nov-21-2012, Dec-19-2012, Jan-16-2013 and Feb-13-2013. The VIX spot closed at 15.60 and the term structure of VIX futures as well as the VIX Put / Call quotes are given in the following tables.

VIX futures term structure

Maturity

09/19/2012

10/17/2012

11/21/2012

12/19/2012

01/16/2013

02/13/2012

VIX futures

16.10

18.55

20.60

21.00

24.05

25.35

Maturity Sep-19-2012

Strike

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Bid

0.05

0.3

0.75

0.6

0.4

0.3

0.25

0.2

0.15

0.15

0.1

0.1

0.1

0.1

0.05

0.05

0.05

Offer

0.1

0.35

0.9

0.7

0.5

0.4

0.35

0.25

0.25

0.2

0.2

0.15

0.15

0.15

0.1

0.1

0.1

Type

P

P

P

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Maturity Oct-17-2012

Strike

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

Bid

0.05

0.1

0.25

0.6

1.05

1.6

1.75

1.5

1.25

1.1

0.9

0.8

0.65

0.6

0.5

0.45

0.4

Offer

0.1

0.15

0.35

0.7

1.15

1.7

1.9

1.55

1.35

1.2

1

0.9

0.8

0.7

0.6

0.55

0.5

Type

P

P

P

P

P

P

C

C

C

C

C

C

C

C

C

C

 

Strike

30

32.5

35

37.5

40

42.5

45

          

Bid

0.35

0.25

0.15

0.1

0.1

0.05

0.05

          

Offer

0.4

0.35

0.3

0.25

0.2

0.15

0.15

          

Type

C

C

C

C

C

C

C

          

Maturity Nov-21-2012

Strike

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

Bid

0.05

0.1

0.3

0.6

0.95

1.45

1.95

2.5

2.75

2.4

2.15

1.9

1.7

1.5

1.35

1.2

1.05

Offer

0.1

0.2

0.4

0.7

1.1

1.55

2.1

2.7

2.9

2.55

2.3

2.05

1.85

1.65

1.45

1.3

1.15

Type

P

P

P

P

P

P

P

P

C

C

C

C

C

C

C

C

C

Strike

30

32.5

35

37.5

40

42.5

45

47.5

50

55

60

      

Bid

0.95

0.7

0.55

0.4

0.3

0.2

0.15

0.1

0.05

0.05

0.05

      

Offer

1.05

0.85

0.65

0.5

0.4

0.35

0.3

0.25

0.2

0.15

0.1

      

Type

C

C

C

C

C

C

C

C

C

C

C

      

Maturity Dec-19-2012

Strike

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Bid

0.1

0.3

0.55

0.9

1.25

1.7

2.25

2.85

3.3

3

2.75

2.5

2.25

2.05

1.85

1.7

1.55

Offer

0.2

0.4

0.65

1

1.4

1.85

2.4

3

3.6

3.2

2.9

2.65

2.4

2.2

2

1.8

1.65

Type

P

P

P

P

P

P

P

P

C

C

C

C

C

C

C

C

C

Strike

32.5

35

37.5

40

42.5

45

47.5

50

55

60

       

Bid

1.2

0.95

0.75

0.65

0.5

0.4

0.3

0.25

0.15

0.1

       

Offer

1.35

1.1

0.9

0.75

0.6

0.45

0.4

0.35

0.25

0.2

       

Type

C

C

C

C

C

C

C

C

C

C

       

Maturity Jan-16-2013

Strike

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Bid

0.05

0.2

0.35

0.55

0.9

1.25

1.65

2.15

2.7

3.3

3.9

3.6

3.2

2.95

2.7

2.45

2.25

Offer

0.15

0.25

0.5

0.7

1.05

1.4

1.8

2.3

2.85

3.4

4.1

3.8

3.5

3.2

2.9

2.65

2.45

Type

P

P

P

P

P

P

P

P

P

P

P

C

C

C

C

C

C

Strike

32.5

35

37.5

40

42.5

45

47.5

50

55

60

       

Bid

1.8

1.45

1.15

0.95

0.75

0.6

0.5

0.4

0.25

0.15

       

Offer

2

1.6

1.35

1.1

0.85

0.75

0.6

0.5

0.4

0.3

       

Type

C

C

C

C

C

C

C

C

C

C

       

Maturity Feb-13-2013

Strike

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Bid

0.05

0.15

0.3

0.5

0.75

1.05

1.45

1.85

2.35

2.9

3.4

4

4

3.6

3.3

3.1

2.85

Offer

0.2

0.3

0.35

0.6

0.9

1.2

1.6

2.05

2.55

3.1

3.7

4.3

4.2

3.9

3.6

3.4

3.1

Type

P

P

P

P

P

P

P

P

P

P

P

P

C

C

C

C

C

Strike

32.5

35

37.5

40

42.5

45

47.5

50

55

60

65

70

     

Bid

2.35

1.9

1.55

1.25

1.05

0.85

0.7

0.6

0.4

0.25

0.15

0.15

     

Offer

2.55

2.1

1.75

1.45

1.2

1

0.85

0.75

0.55

0.4

0.3

0.2

     

Type

C

C

C

C

C

C

C

C

C

C

C

C

     

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drimus, G., Farkas, W. Local volatility of volatility for the VIX market. Rev Deriv Res 16, 267–293 (2013). https://doi.org/10.1007/s11147-012-9086-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11147-012-9086-9

Keywords

JEL Classification

Navigation