Skip to main content
Log in

Tungsten-doped MoS2-based nanostructure for photocatalytic hydrogen evolution under visible light

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

In this work, we introduced a simple approach to boost the photocatalytic activity of MoS2 by introducing transition metal (W) doping. The W-MoS2 (10 mg) exhibited a substantial enhancement in photocatalytic activity for H2 production, achieving an impressive rate of approximately 925 µmol g−1 after 6 h, which is 1.5-fold higher than bare MoS2. The highest H2 production activity of 1740 µmol g−1 after 6 h was obtained for 50 mg W-MoS2 photocatalyst. The observed increase in activity can be ascribed to the formation of a Schottky barrier at the heterojunction interface, along with advantageous properties of improved active sites resulting from tungsten doping into MoS2. Furthermore, the enhanced activity of W-MoS2 may be attributed to the promotion of catalytic kinetics by tungsten and molybdenum sites, exhibiting commendable activity for water dissociation and higher efficiency in H+ adsorption. These factors contribute significantly to the overall improved performance of the W-MoS2 photocatalyst. Further, platinum (Pt) was also used as cocatalyst and enhanced photocatalytic activity of 2145 µmol g−1 after 6 h was observed for W-MoS2 + 5 wt% Pt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Authors elect to not to share data.

References

  1. Raza W, Ahmad K (2021) Handb. Greener Synth. Nanomater. Compd. Elsevier 917–938.

  2. Raza W (2021) All-Carbon Compos. Hybrids, Royal Society Of Chem. 77–98.

  3. Ahmad K, Raza W, Khan MQ (2021) Handb. Greener Synth. Nanomater. Compd. Vol. 2 Synth. Macroscale Nanoscale, Elsevier 549–564.

  4. Raza W, Ahmad K (2021) Handb. Greener Synth. Nanomater. Compd. Vol. 1 Fundam. Princ. Methods, Elsevier 917–938.

  5. Raza W, Tesler AB, Mazare A, Tomanec O, Kment S, Schmuki P (2023) ChemCatChem 15:e202300327

    Article  CAS  Google Scholar 

  6. Zeng D, Li Y (2024) Appl Catal B Environ 342:123393

    Article  CAS  Google Scholar 

  7. Li Y, Li S, Meng L, Peng S (2023) J Colloid Interf Sci 650:266–274

    Article  CAS  Google Scholar 

  8. Raza W, Kerketta U, Hwang I, Schmuki P (2022) ChemElectroChem 9:e202200706

    Article  CAS  Google Scholar 

  9. Raza W, Ahmad K, Khan RA, Kim H (2023) Int J Hydrogen Energy 48:29071

    Article  CAS  Google Scholar 

  10. Li Y, Han P, Hou Y, Peng S, Kuang X (2019) Appl Catal B: Environ 244:604–611

    Article  CAS  Google Scholar 

  11. Li Y, Hou Y, Fu Q, Peng S, Hu YH (2017) Appl Catal B: Environ 206:726–733

    Article  CAS  Google Scholar 

  12. Li Y, Wang H, Peng S (2014) J Phys Chem C 118:19842–19848

    Article  CAS  Google Scholar 

  13. Ahmad K, Raza W, Alsulmi A, Kim H (2023) Diam Relat Mater 138:110178

    Article  CAS  Google Scholar 

  14. Riaz KN, Yousaf N, Tahir MB, Israr Z, Iqbal T (2019) Int J Energy Res 43:491

    Article  Google Scholar 

  15. Rahman A, Jennings JR, Tan AL, Khan MM (2022) ACS Omega 7:22089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dai X, Du K, Li Z, Liu M, Ma Y, Sun H, Zhang X, Yang Y (2015) ACS Appl Mater Interf 7:27242

    Article  CAS  Google Scholar 

  17. Miao J, Xiao FX, Yang HB, Khoo SY, Chen J, Fan Z, Hsu YY, Chen HM, Zhang H, Liu B (2015). Adv Sci. https://doi.org/10.1126/sciadv.1500259)

    Article  Google Scholar 

  18. Zhang J, Xu X, Yang L, Cheng D, Cao D (2019) Small Meth 3:1900653

    Article  CAS  Google Scholar 

  19. Xu Q, Zhang Y, Zheng Y, Liu Y, Tian Z, Shi Y, Wang Z, Ma J, Zheng W (2021) J Phys Chem C 125:11369

    Article  CAS  Google Scholar 

  20. Chen J, Xia Y, Yang J, Chen B (2018) Appl Phys A Mater Sci Process 124:1

    Article  Google Scholar 

  21. Chen R, Pei Y, Kang Y, Liu J, Xia Y, Wang J, Xu H, Jiang C, Li W, Xiao X (2022) Adv Electron Mater 8:2200281

    Article  CAS  Google Scholar 

  22. Raza W, Faisal SM, Owais M, Bahnemann D, Muneer M (2016) RSC Adv 6:78335

    Article  CAS  Google Scholar 

  23. Raza W, Bahnemann D, Muneer M (2018) Catal Today 300:89

    Article  CAS  Google Scholar 

  24. Denisov N, Yoo JE, Schmuki P (2019) Electrochim Acta 319:61

    Article  CAS  Google Scholar 

  25. Schlenkrich J, Lübkemann-Warwas F, Graf RT, Wesemann C, Schoske L, Rosebrock M, Hindricks KDJ, Behrens P, Bahnemann DW, Dorfs D, Bigall NC (2023) Small 19:2208108

    Article  CAS  Google Scholar 

  26. Raza W, Bahnemann D, Muneer M (2017) J Photochem Photobiol A Chem 342:102

    Article  CAS  Google Scholar 

  27. Raza W, Khan A, Alam U, Muneer M, Bahnemann D (2016) J Mol Struct 1107:39

    Article  CAS  Google Scholar 

  28. Raza W, Haque MM, Muneer M, Harada T, Matsumura M (2015) J Alloys Compd 648:641

    Article  CAS  Google Scholar 

  29. Raza W, Haque MM, Muneer M (2014) Appl Surf Sci 322:215

    Article  CAS  Google Scholar 

  30. Osuagwu B, Raza W, Tesler AB, Schmuki P (2021) Nanoscale 13:12750–12756

    Article  CAS  PubMed  Google Scholar 

  31. Zheng Z, Yu L, Gao M et al (2020) Nat Commun 11:3315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Barpuzary D, Banik A, Gogoia G, Qureshi M (2015) J Mater Chem A 3:14378–14388

    Article  CAS  Google Scholar 

  33. Nagajyothi PC, Devarayapalli KC, Shim J, Prabhakar Vattikuti SV (2020) Int J Hydrogen Energy 45:32756–32769

    Article  CAS  Google Scholar 

  34. Xin X, Song Y, Guo S, Zhang Y, Wang B, Wang Y, Li X (2020) J Alloys Comp 829:154635

    Article  CAS  Google Scholar 

  35. Zhang Y, Lu D, Li H, Kondamareddy KK, Wang H, Zhang B, Wang J, Wu Q, Zeng Y, Zhang X, Zhou M, Neena D, Hao H, Pei H, Fan H (2022) Appl Surf Sci 586:152770

    Article  CAS  Google Scholar 

  36. Shi X, Fujitsuka M, Kim S, Majima T (2018) Small 14:1703277

    Article  Google Scholar 

  37. Lu D, Wang H, Zhao X, Kondamareddy KK, Ding J, Li C, Fang P (2017) ACS Sustain Chem Eng 5:1436–1445

    Article  CAS  Google Scholar 

  38. Liu Y, Zhang H, Ke J, Zhang J, Tian W, Xu X, Duan X, Sun H, Tade MO, Wang S (2018) Appl Catal B Environ 228:64–74

    Article  CAS  Google Scholar 

  39. Khalid NR, Israr Z, Tahir MB, Iqbal T (2020) Int J Hydrogen Energy 45:8479–8489

    Article  CAS  Google Scholar 

Download references

Acknowledgements

R.A.K gratefully acknowledged Researchers Supporting Project (Project number, RSP2024R400), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd Quasim Khan.

Ethics declarations

Conflict of interests

Authors declare no conflicts of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3530 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, K., Raza, W., Khan, M.Q. et al. Tungsten-doped MoS2-based nanostructure for photocatalytic hydrogen evolution under visible light. Reac Kinet Mech Cat (2024). https://doi.org/10.1007/s11144-024-02627-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11144-024-02627-9

Keywords

Navigation