Skip to main content
Log in

Synthesis of platinum decorated bismuth vanadate (Pt-BiVO4) nanocomposite for photocatalytic hydrogen production

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

In the past years, bismuth vanadate (BiVO4) has emerged as rising star and gained much attention for various photocatalytic and electrochemical applications. In this study, our group report the precipitation synthesis of BiVO4 and its photocatalytic properties for the generation of hydrogen (H2). The obtained results demonstrate the H2 generation of 32.4 µmol g−1. Further studies were carried out by employing platinum (Pt) as co-catalyst which dramatically improved the H2 generation. The obtained results show that an enhanced 115.7 µmol g−1 H2 was generated using BiVO4 as photocatalyst in presence of Pt co-catalyst. Further studies also exhibit the presence of good stability of the BiVO4 as photocatalyst and suggested its potential for reusability studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hajikhani A, Suominen A (2022) Mapping the sustainable development goals (SDGs) in science, technology and innovation: application of machine learning in SDG-oriented artefact detection. Scientometrics 127:6661–6693

    Article  Google Scholar 

  2. Ahmad K, Mobin SM (2020) Organic-inorganic copper (II) based perovskites: a benign approach towards lowtoxic and water stable light absorbers for photovoltaic applications. Energy Technol 8:1901185

    Article  CAS  Google Scholar 

  3. Ahmad K, Ansari SN, Natarajan K, Mobin SM (2019) A two-step modified deposition method based (CH3NH3)3Bi2I9 perovskite: lead free, highly stable and enhanced photovoltaic performance. ChemElectroChem 6:1–8

    Article  Google Scholar 

  4. Ahmad K, Mobin SM (2020) Recent progress and challenges in A3Sb2X9-based perovskite solar cells. ACS Omega 5(44):28404–28412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Li Y, Hu Y, Peng S, Lu G, Li S (2009) Synthesis of CdS nanorods by an ethylenediamine assisted hydrothermal method for photocatalytic hydrogen evolution. J Phys Chem C 2009(113):9353–9358

    Google Scholar 

  6. Zheng M, Cao X, Ding Y, Tian T, Lin J (2018) Boosting photocatalytic water oxidation achieved by BiVO4 coupled with iron-containing polyoxometalate: analysis the true catalyst. J Catal 363:109–116

    Article  CAS  Google Scholar 

  7. Li Y, Li S, Meng L, Peng S (2023) Synthesis of oriented J type ZnIn2S4@CdIn2S4 heterojunction by controllable cation exchange for enhancing photocatalytic hydrogen evolution. J Colloid Interface Sci 650:266–274

    Article  CAS  PubMed  Google Scholar 

  8. Li Y, Wang H, Peng S (2014) Tunable photodeposition of MoS2 onto a composite of reduced graphene oxide and CdS for synergic photocatalytic hydrogen generation. J Phys Chem C 118:19842–19848

    Article  CAS  Google Scholar 

  9. Li Y, He R, Han P, Hou B, Peng S, Ouyang C (2020) A new concept: volume photocatalysis for efficient H2 generation-using low polymeric carbon nitride as an example. Appl Catal B Environ 279:119379

    Article  CAS  Google Scholar 

  10. Zeng D, He F, Li Y (2023) Construction of terbium oxide/polymer carbon nitride heterojunction for boosting photocatalytic overall water splitting without cocatalyst. Appl Catal A Gen 650:118986

    Article  CAS  Google Scholar 

  11. Li Y, Hou Y, Fu Q, Peng S, Hu YH (2017) Oriented growth of ZnIn2S4/In(OH)3 heterojunction by a facile hydrothermal transformation for efficient photocatalytic H2 production. Appl Catalysis B Environ 206:726–733

    Article  CAS  Google Scholar 

  12. Li Y, Han P, Hou Y, Peng S, Kuang X (2019) Oriented ZnmIn2Sm+3@In2S3 heterojunction with hierarchical structure for efficient photocatalytic hydrogen evolution. Appl Catal B Environ 244:604–611

    Article  CAS  Google Scholar 

  13. Raza W, Ahmad K (2020) Visible light-driven photocatalysts for environmental applications based on graphitic carbon nitride. In: Kharissova O, Martínez L, Kharisov B (eds) Handbook of nanomaterials and nanocomposites for energy and environmental applications. Springer, Cham

    Google Scholar 

  14. Yang H, Jin ZL, Hu HY, Bi YP, Lu GX (2017) Ni–Mo–S nanoparticles modified graphitic C3N4 for efficient hydrogen evolution. Appl Surf Sci 427:587–597

    Article  Google Scholar 

  15. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Article  CAS  PubMed  Google Scholar 

  16. Li Y, Ji M, Ma Z, Meng L, He R, Peng S (2022) Hierarchically porous polymeric carbon nitride as a volume photocatalyst for efficient H2 generation under strong irradiation. RRL Solar 6:2100823

    Article  CAS  Google Scholar 

  17. Ma D, Shi JW, Zou Y, Fan Z, Ji X, Niu C (2017) Highly efficient photocatalyst based on a CdS quantum dots/ZnO nanosheets 0D/2D heterojunction for hydrogen evolution from water splitting. ACS Appl Mater Interfaces 9:25377–25386

    Article  CAS  PubMed  Google Scholar 

  18. Ran J, Zhang J, Yu J, Jaroniec M, Qiao SZ (2014) Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem Soc Rev 43:7787–7812

    Article  CAS  PubMed  Google Scholar 

  19. Zhou P, Yu JG, Jaroniec M (2014) All-solid-state Z-scheme photocatalytic systems. Adv Mater 26:4920–4935

    Article  CAS  PubMed  Google Scholar 

  20. Lingampalli SR, Gautam UK, Rao CNR (2013) Highly efficient photocatalytic hydrogen generation by solution-processed ZnO/Pt/CdS, ZnO/Pt/Cd1−xZnxS and ZnO/Pt/CdS1−xSex hybrid nanostructures. Energy Environ Sci 6:3589–3594

    Article  CAS  Google Scholar 

  21. Ahmed MA, Fahmy A, Abuzaid MG, Hashem EM (2020) Fabrication of novel AgIO4/SnO2 heterojunction for photocatalytic hydrogen production through direct Z-scheme mechanism. J Photochem Photobiol A 400:112660

    Article  CAS  Google Scholar 

  22. Sun M, Zhou Y, Yu T (2022) Synthesis of g-C3N4/NiO-carbon microsphere composites for Co-reduction of CO2 by photocatalytic hydrogen production from water decomposition. J Clean Prod 357:131801

    Article  CAS  Google Scholar 

  23. Sun S, Ren D, Yang M, Cui J, Yang Q, Liang S (2022) In-situ construction of direct Z-scheme sea-urchin-like ZnS/SnO2 heterojunctions for boosted photocatalytic hydrogen production. Int J Hydrogen Energy 47:9201–9208

    Article  CAS  Google Scholar 

  24. Li B, Wang Y, Zeng Y, Wang R (2016) Synthesis of CuO micro-sphere combined with g-C3N4 using Cu2O as precursor for enhanced photocatalytic hydrogen evolution. Mater Lett 178:308–311

    Article  CAS  Google Scholar 

  25. Huang S, Bao R, Wang J, Yi J, Zhang Z, Liu L, Han Y, Li Z, Min D, Zhang W, Ge Z, Zhang X (2023) Synergistic effect of oxygen vacancy defects and TiO2/WO3 heterostructures in photocatalytic hydrogen production and dye degradation. J Alloy Comp 961:170945

    Article  CAS  Google Scholar 

  26. Wei D, Ding Y, Li Z (2020) Noble-metal-free Z-Scheme MoS2–CdS/WO3–MnO2 nanocomposites for photocatalytic overall water splitting under visible light. Int J Hydrogen Energy 45:17320–17328

    Article  CAS  Google Scholar 

  27. Chen L, Xie X, Su T, Ji H, Qin Z (2021) Co3O4/CdS p-n heterojunction for enhancing photocatalytic hydrogen production: Co–S bond as a bridge for electron transfer. Appl Surf Sci 567:150849

    Article  CAS  Google Scholar 

  28. Yu J, Nong Q, Jiang X, Liu X, Wu Y, He Y (2016) Novel Fe2(MoO4)3/g-C3N4 heterojunction for efficient contaminant removal and hydrogen production under visible light irradiation. Sol Energy 139:355–364

    Article  CAS  Google Scholar 

  29. Wang H, Zheng W, Li W, Tian F, Kuang S, Bu Y, Ao J-P (2017) Control the energy band potential of ZnMgO solid solution with enhanced photocatalytic hydrogen evolution capacity. Appl Catal B Environ 217:523–529

    Article  CAS  Google Scholar 

  30. Xu L, Deng X, Li Z (2018) Photocatalytic splitting of thiols to produce disulfides and hydrogen over PtS/ZnIn2S4 nanocomposites under visible light. Appl Catal B Environ 234:50–55

    Article  CAS  Google Scholar 

  31. Xia D, Gao H, Li M, Gong F, Li M (2021) Transition metal vanadates electrodes in lithium-ion batteries: a holistic review. Energy Storage Mater 35:169–191

    Article  Google Scholar 

  32. Jayaraman V, Ayappan C, Mani A (2022) Facile preparation of bismuth vanadate-sheet/carbon nitride rod-like interface photocatalyst for efficient degradation of model organic pollutant under direct sunlight irradiation. Chemosphere 287:132055

    Article  CAS  PubMed  Google Scholar 

  33. Xiao B-C, Lin L-Y, Hong J-Y, Lin H-S, Song Y-T (2017) Synthesis of a monoclinic BiVO4 nanorod array as the photocatalyst for efficient photoelectrochemical water oxidation. RSC Adv 7:7547–7554

    Article  CAS  Google Scholar 

  34. Sekar K, Kassam A, Bai Y, Coulson B, Li W, Douthwaite RE, Sasaki K, Lee AF (2021) Hierarchical bismuth vanadate/re duce d graphene oxide composite photocatalyst for hydrogen evolution and bisphenol A degradation. Appl Mater Today 22:100963

    Article  Google Scholar 

  35. Abo El-Yazeed WS, El-Hakam SA, Salah AA, Ibrahim AA (2021) Fabrication and characterization of reduced graphene-BiVO4 nanocomposites for enhancing visible light photocatalytic and antibacterial activity. J Photochem Photobiol A Chem 417:113362

    Article  CAS  Google Scholar 

  36. Sun M, Zhang Z, Shi Q, Yang J, Xie M, Han W (2021) Toward photocatalytic hydrogen generation over BiVO4 by controlling particle size. Chin Chem Lett 32:2419–2422

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deputyship for Research & Innovation, “Ministry of Education” in Saudi Arabia for funding this research work through the project number (IFKSUDR_E172).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imran Hasan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 359 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alharthi, F.A., Marghany, A.E., Abduh, N.A.Y. et al. Synthesis of platinum decorated bismuth vanadate (Pt-BiVO4) nanocomposite for photocatalytic hydrogen production. Reac Kinet Mech Cat 137, 423–432 (2024). https://doi.org/10.1007/s11144-023-02520-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-023-02520-x

Keywords

Navigation