Skip to main content
Log in

In-situ X-ray absorption spectroscopy study on the formation of superoxides on CuxSny composite catalysts enables the direct synthesis of catechol

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

This work proposes the activated mechanical alloyed composite catalysts by in-situ O2 heat treatment (CuxSn100−xO2HT). The catalytic activity of catalysts is improved tremendously for the phenol hydroxylation by superoxide (O2). The conversion is almost 100% and selective to 94% catechol (CAT). To understand the formation of superoxide, in situ time-resolved Cu K-edge and Sn L3-edge X-ray absorption spectroscopy explain the contribution of an oxygen atom to the CuxSny composites. Meanwhile, in-situ XAS with O2 heat treatment depicts how superoxide bonded on CuxSny composites. Quantitatively, H2-TPR and curve fitting ATR-FTIR determine the total amount of superoxide on MAed CuxSn100−xO2HT and distinguish the numbers of O2 on Cu and Sn sites in CuxSn100−xO2HT. EPR explains that the hybridization of d-orbitals of Cu2+ and p-d orbitals of Sn4+ shifted the g-factor of a free electron in superoxide. XPS depth profiling of O 1s reveals identical superoxide on the composite CuxSnyO2HT catalysts. After optimizing the Sn contents, Cu30Sn70O2HT exhibits the highest catalytic activity and a number of superoxides, giving the CAT 183 μmol in conjunction with reducing tar contents. Extended X-ray absorption fine structure (EXAFS) illustrates the present compressive strain of Cu–O distance and is essential in increasing the quantity of CAT. The work presents how mechanical alloying can be a potential free-solvent catalyst synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Costa JAS, de Jesus RA, Santos DO, Neris JB, Figueiredo RT, Paranhos CM (2021) Synthesis, functionalization, and environmental application of silica-based mesoporous materials of the M41S and SBA-n families: a review. J Environ Chem Eng 9:105259. https://doi.org/10.1016/j.jece.2021.105259

    Article  CAS  Google Scholar 

  2. Xia K, Lang W-Z, Li P-P, Yan X, Guo Y-J (2016) The properties and catalytic performance of PtIn/Mg(Al)O catalysts for the propane dehydrogenation reaction: effects of pH value in preparing Mg(Al)O supports by the co-precipitation method. J Catal 338:104–114. https://doi.org/10.1016/j.jcat.2016.02.028

    Article  CAS  Google Scholar 

  3. Ahmadi R, Amini MK, Bennett JC (2012) Pt–Co alloy nanoparticles synthesized on sulfur-modified carbon nanotubes as electrocatalysts for methanol electrooxidation reaction. J Catal 292:81–89. https://doi.org/10.1016/j.jcat.2012.05.001

    Article  CAS  Google Scholar 

  4. del Río E, Gaona D, Hernández-Garrido JC, Calvino JJ, Basallote MG, Fernández-Trujillo MJ, Pérez-Omil JA, Gatica JM (2014) Speciation-controlled incipient wetness impregnation: a rational synthetic approach to prepare sub-nanosized and highly active ceria–zirconia supported gold catalysts. J Catal 318:119–127. https://doi.org/10.1016/j.jcat.2014.07.001

    Article  CAS  Google Scholar 

  5. Adabavazeh Z, Karimzadeh F, Enayati MH (2012) Synthesis and structural characterization of nanocrystalline (Ni, Fe)3Al composite compound prepared by mechanical alloying. Adv Powder Technol 23:284–289. https://doi.org/10.1016/j.apt.2011.03.012

    Article  CAS  Google Scholar 

  6. Borchers C, Garve C, Tiegel M, Deutges M, Herz A, Edalati K, Pippan R, Horita Z, Kirchheim R (2015) Nanocrystalline steel obtained by mechanical alloying of iron and graphite subsequently compacted by high-pressure torsion. Acta Mater 97:207–215. https://doi.org/10.1016/j.actamat.2015.06.049

    Article  CAS  Google Scholar 

  7. Besson R, Avettand-Fènoël MN, Thuinet L, Kwon J, Addad A, Roussel P, Legris A (2015) Mechanisms of formation of Al4Cu9 during mechanical alloying: an experimental study. Acta Mater 87:216–224. https://doi.org/10.1016/j.actamat.2014.12.050

    Article  CAS  Google Scholar 

  8. Pasebani S, Charit I, Wu YQ, Butt DP, Cole JI (2013) Mechanical alloying of lanthana-bearing nanostructured ferritic steels. Acta Mater 61:5605–5617. https://doi.org/10.1016/j.actamat.2013.06.002

    Article  CAS  Google Scholar 

  9. Pithakratanayothin S, Tongsri R, Wongkasemjit S, Chaisuwan T (2016) A simple route to CuxSn(100–x) composite nanoparticle catalyst for ultra-phenol hydroxylation. Mat Chem Phys 181:452–461. https://doi.org/10.1016/j.matchemphys.2016.06.081

    Article  CAS  Google Scholar 

  10. Klaewkla R, Kulprathipanja S, Rangsunvigit P, Rirksomboon T, Rathbun W, Nemeth L (2007) Kinetic modelling of phenol hydroxylation using titanium and tin silicalite-1s: effect of tin incorporation. Chem Eng J 129:21–30. https://doi.org/10.1016/j.cej.2006.10.034

    Article  CAS  Google Scholar 

  11. Vu BK, Song MB, Ahn IY, Suh Y-W, Suh DJ, Kim W-I, Koh H-L, Choi YG, Shin EW (2011) Pt–Sn alloy phases and coke mobility over Pt–Sn/Al2O3 and Pt–Sn/ZnAl2O4 catalysts for propane dehydrogenation. Appl Catal A 400:25–33. https://doi.org/10.1016/j.apcata.2011.03.057

    Article  CAS  Google Scholar 

  12. Gianotti E, Reyes-Carmona Á, Taillades-Jacquin M, Taillades G, Rozière J (2014) Study of the effect of addition of Into Pt-Sn/γ-Al2O3 catalysts for high purity hydrogen production via partial dehydrogenation of kerosene jet A-1. Appl Catal B 160–161:574–581. https://doi.org/10.1016/j.apcatb.2014.06.003

    Article  CAS  Google Scholar 

  13. Fürtauer S, Li D, Cupid D, Flandorfer H (2013) The Cu–Sn phase diagram, part I: new experimental results. Composites 34:142–147. https://doi.org/10.1016/j.intermet.2012.10.004

    Article  CAS  Google Scholar 

  14. Pan Y, Xu X, Zhong Y, Ge L, Chen Y, Veder JM, Guan D, O’Hayre R, Li M, Wang G, Wang H, Zhou W, Shao Z (2020) Direct evidence of boosted oxygen evolution over perovskite by enhanced lattice oxygen participation. Nat Commun 11:2002. https://doi.org/10.1038/s41467-020-15873-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yoo JS, Rong X, Liu Y, Kolpak AM (2018) Role of lattice oxygen participation in understanding trends in the oxygen evolution reaction on perovskites. ACS Catal 8:4628–4636. https://doi.org/10.1021/acscatal.8b00612

    Article  CAS  Google Scholar 

  16. Liu D, Ai H, Li J, Fang M, Chen M, Liu D, Du X, Zhou P, Li F, Lo KH, Tang Y, Chen S, Wang L, Xing G, Pan H (2020) Surface reconstruction and phase transition on vanadium–cobalt–iron trimetal nitrides to form active oxyhydroxide for enhanced electrocatalytic water oxidation. Adv Energy Mater 10:2002464. https://doi.org/10.1002/aenm.202002464

    Article  CAS  Google Scholar 

  17. Anand R, Nissimagoudar AS, Umer M, Ha M, Zafari M, Umer S, Lee G, Kim KS (2021) Late transition metal doped MXenes showing superb bifunctional electrocatalytic activities for water splitting via distinctive mechanistic pathways. Energy Mater Adv. https://doi.org/10.1002/aenm.202102388

    Book  Google Scholar 

  18. Harzandi AM, Shadman S, Nissimagoudar AS, Kim DY, Lim HD, Lee JH, Kim MG, Jeong HY, Kimand Y, Kim KS (2021) Ruthenium core-shell engineering with nickel single atoms for selective oxygen evolution via nondestructive mechanism. Adv Energy Mater 11:2003448. https://doi.org/10.1002/aenm.202003448

    Article  CAS  Google Scholar 

  19. Guan D, Zhang K, Hu Z, Wu X, Chen JL, Pao CW, Guo Y, Zhou W, Shao Z (2021) Exceptionally robust face-sharing motifs enable efficient and durable water oxidation. Adv Mater 33:2103392. https://doi.org/10.1002/adma.202103392

    Article  CAS  Google Scholar 

  20. Wang C, Zhai P, Xia M, Wu Y, Zhang B, Li Z, Ran L, Gao J, Zhang X, Fan Z (2021) Engineering lattice oxygen activation of iridium clusters stabilized on amorphous bimetal borides array for oxygen evolution reaction. Angew Chem Int Ed 60:27126–27134. https://doi.org/10.1002/anie.202112870

    Article  CAS  Google Scholar 

  21. Cullity BD (2001) Elements of X-ray diffraction, 2nd edn. Addison-Wesley Publishing Company Inc, Boston

    Google Scholar 

  22. Callister WD (2003) Materials science and engineering: an introduction. Wiley, New York

    Google Scholar 

  23. Howard SA, Preston KD (1989) Modern powder diffraction. The Mineralogical Society of America, Washington 20:217–275

    Google Scholar 

  24. Buarod E, Pithakratanayothin S, Naknaka S, Chaiyasith P, Yotkaew T, Tosangthum N, Tongsri R (2015) Facile synthesis and characterization of tenorite nanoparticles from gas-atomized Cu powder. Powder Technol 269:118–126. https://doi.org/10.1016/j.powtec.2014.08.052

    Article  CAS  Google Scholar 

  25. Jia W, Zhang J, Zuo M, Yu X, Liu H, Li Z, Sun Y, Yang S, Tang X, Zeng X, Lin L (2022) Facile one-pot synthesis of furan double Schiff base from 5-hydroxymethylfurfural via an amination–oxidation–amination strategy in water. ACS Sustain Chem Eng 10:421–430. https://doi.org/10.1021/acssuschemeng.2c01576

    Article  CAS  Google Scholar 

  26. Baronetti GT, de Miguel SR, Scelza OA, Castro AA (1986) State of metallic phase in PtSn/Al2O3 catalysts prepared by different deposition techniques. Appl Catal 24:109–116. https://doi.org/10.1016/j.catcom.2006.01.027

    Article  CAS  Google Scholar 

  27. Chetri P, Choudhury B, Choudhury A (2014) Room temperature ferromagnetism in SnO2 nanoparticles: an experimental and density functional study. J Mater Chem C 2:9294–9302. https://doi.org/10.1039/C4TC01070A

    Article  CAS  Google Scholar 

  28. Che M, Tench AJ (1983) Characterization and reactivity of molecular oxygen species on oxide surfaces. Adv Catal 32:1–148. https://doi.org/10.1016/S0360-0564(08)60439-3

    Article  CAS  Google Scholar 

  29. Xue J, Wang X, Qi G, Wang J, Shen M, Li W (2013) Characterization of copper species over Cu/SAPO-34 in selective catalytic reduction of NOx with ammonia: Relationships between active Cu sites and de-NOx performance at low temperature. J Catal 297:56–64. https://doi.org/10.1016/j.jcat.2012.09.020

    Article  CAS  Google Scholar 

  30. Martínez-arias A, Conesa JC, Soria J (2007) O2-probe EPR as a method for characterization of surface oxygen vacancies in ceria-based catalysts. Res Chem Intermed 33:775–791. https://doi.org/10.1163/156856707782169345

    Article  Google Scholar 

  31. Soria J, Martínez-Arias A, Conesa JC (1995) Spectroscopic study of oxygen adsorption as a method to study surface defects on CeO2. J Chem Soc Faraday Trans 91:1669. https://doi.org/10.1039/FT9959101669

    Article  CAS  Google Scholar 

  32. Martínez-Arias A, Fernández-García M, Salamanca LN, Valenzuela RX, Conesa JC, Soria J (2000) Structural and redox properties of ceria in alumina-supported ceria catalyst supports. J Phys Chem B 104:4038. https://doi.org/10.1021/jp992796y

    Article  CAS  Google Scholar 

  33. Niu X, Zhao T, Yuan F, Zhu Y (2014) Preparation of Hollow CuO@SiO2 spheres and its catalytic performances for the NO + CO and CO oxidation. Sci Rep 5:9153. https://doi.org/10.1038/srep09153

    Article  CAS  Google Scholar 

  34. Liu Z, Handa K, Kaibuchi K, Tanaka Y, Kawai J (2004) Comparison of the Sn L edge X-ray absorption spectra and the corresponding electronic structure in Sn, SnO, and SnO2. J Electron Spectrosc Relat Phenomena 135:155–160

    Article  CAS  Google Scholar 

  35. Koningsberger DC, Prins R (1988) X-ray absorption: principles, applications, techniques of EXAFS, SEXAFS, and XANES. Wiley, New York, p 673

    Google Scholar 

  36. Prayoonphokkharat P, Amonpattarakit P, Watchrapasorn A (2020) Crystal structure and XANES study of Sn-substituted YBa2Cu3O7-y powder prepared by solid-state synthesis method. Appl Phys A. https://doi.org/10.1007/s00339-020-3330-1

    Article  Google Scholar 

  37. Groothaert MH, van Bokhoven JA, Battiston AA, Weckhuysen BM, Schoonheydt RA (2003) Selective oxidation of methane by the bis(μ-oxo) dicopper core stabilized on ZSM-5 and mordenite zeolites. J Am Chem Soc 125(2003):7629–7640. https://doi.org/10.1021/ja047158u

    Article  CAS  PubMed  Google Scholar 

  38. Cheng N, Wei YL, Yang YW, Lee JF (2005) Effect of water on XAS spectrum of Cu(NO3)2 reference. Phys Scr 115:907–908. https://doi.org/10.1238/physica.topical.115a00907

    Article  Google Scholar 

  39. Chaboy J, Munoz-Paez A, Carrera F, Merkling P, Marcos ES (2005) Ab initio x-ray absorption study of copper K-edge XANES spectra in Cu(II) compounds. Phys Rev B 71:134208. https://doi.org/10.1103/PhysRevB.71.134208

    Article  CAS  Google Scholar 

  40. Lieberman RL, Rosenzweig AC (2005) Crystal structure of a membrane-bound metalloenzyme that catalyzes the biological oxidation of methane. Nature 434:177–182

    Article  CAS  PubMed  Google Scholar 

  41. Balasubramanian R, Smith SM, Rawat S, Yatsunyk LA, Stemmler TL, Rosenzweig AC (2010) Oxidation of methane by a biological dicopper centre. Nature 465:115–131. https://doi.org/10.1038/nature08992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sushkevich VL, Palagin D, Ranocchiari M, van Bokhoven JA (2017) Selective anaerobic oxidation of methane enables direct synthesis of methanol. Science 356:523–527. https://doi.org/10.1126/science.aam9035

    Article  CAS  PubMed  Google Scholar 

  43. Vanelderen P, Snyder BER, Tsai M, Hadt RG, Vancauwenbergh J, Coussens O, Schoonheydt RA, Sels BF, Solmon EI (2015) Spectroscopic definition of the copper active sites in mordenite: selective methane oxidation. J Am Chem Soc 137:6383–6392. https://doi.org/10.1021/jacs.5b02817

    Article  CAS  PubMed  Google Scholar 

  44. Oswald HR, Reller A, Schmalle HW, Dubler E (1990) Structure of copper(II) hydroxide, Cu(OH)2. Acta Crystallogr Sect C 46:2279–2284. https://doi.org/10.1107/S0108270190006230

    Article  Google Scholar 

  45. Forsyth JB, Hull S (1991) The effect of hydrostatic pressure on the ambient temperature structure of CuO. J Phys 3:5257. https://doi.org/10.1088/0953-8984/3/28/001

    Article  CAS  Google Scholar 

  46. LoJacono M, Fierro G, Dragone R, FengDitri J, Hall WK XB (1997) Zeolite chemistry of CuZSM-5 revisited. J Phys Chem B 101:1979–1984. https://doi.org/10.1021/jp9632044

    Article  CAS  Google Scholar 

  47. Takao G, Hiroya O, Yu I, Yubin L, Fumihiro N, Masahiro M, Futoshi M (2019) Electrocatalytic conversion of carbon dioxide to formic acid over nanosized Cu6Sn5 composite compounds with a SnO2 shell layer. Catal Sci Technol 23(23):6577–6584. https://doi.org/10.1039/C9CY01540J

    Article  Google Scholar 

  48. Neylon MK, Marshall CL, Kropf AJ (2002) In situ EXAFS analysis of the temperature-programmed reduction of Cu-ZSM-5. J Am Chem Soc 124:5457–5465. https://doi.org/10.1021/ja0176696

    Article  CAS  PubMed  Google Scholar 

  49. Cheng W, Zhao X, Su H (2019) Lattice-strained metal–organic-framework arrays for bifunctional oxygen electrocatalysis. Nat Energy 4:115–122. https://doi.org/10.1038/s41560-018-0308-8

    Article  CAS  Google Scholar 

  50. Xiong Y, Yao X, Tang C, Zhang L, Cao Y, Deng Y, Gao F, Dong L (2014) Effect of CO-pretreatment on the CuO–V2O5/γ-Al2O3 catalyst for NO reduction by CO. Catal Sci Technol 4:4416–4425. https://doi.org/10.1039/C4CY00785A

    Article  CAS  Google Scholar 

  51. Chanapattharapol KC, Krachuamram S, Kidkhunthod P, Poo-arporn Y (2020) The effect of Sm addition on structure, redox properties and catalytic activities for water gas shift reaction of ceria-based support. Solid State Sci 99:106066. https://doi.org/10.1016/j.solidstatesciences.2019.106066

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the mutual support or partial scholarship from The Petroleum and Petrochemical college; Ratchadaphiseksompote Endowment Fund, Chulalongkorn University; Thailand Research Fund (Senior Research Scholar); and Powder Metallurgy Research and Development Unit (PM_RDU) of the National Metal and Materials Technology Center (MTEC). The authors also would like to thank Dr. Robert Butcher for proofreading the paper.

Funding

Funding was provided by National Metal and Materials Technology Center and Petroleum and Petrochemical College, Chulalongkorn University.

Author information

Authors and Affiliations

Authors

Contributions

SP: Conceptualization; methodology; validation; writing—original draft; writing—review and editing, supervision, project administration. SN: Writing—original draft, visualization, methodology, software. RT: Funding acquisition. TC: Validation, funding acquisition; writing—review and editing. PK: Funding acquisition. SW: Validation, funding acquisition; writing—review and editing. DB: Visualization. EB: Visualization, validation, investigation.

Corresponding author

Correspondence to Sakollapath Pithakratanayothin.

Ethics declarations

Conflict of interest

There is no conflict to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 639 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pithakratanayothin, S., Numbenjapon, S., Tongsri, R. et al. In-situ X-ray absorption spectroscopy study on the formation of superoxides on CuxSny composite catalysts enables the direct synthesis of catechol. Reac Kinet Mech Cat 136, 3079–3104 (2023). https://doi.org/10.1007/s11144-023-02518-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-023-02518-5

Keywords

Navigation