Skip to main content
Log in

Impact of quercetin concentration on the thermal stability of ultra high molecular weight polyethylene: a thermogravimetric study

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The impact of quercetin concentration (0.1–1.0 wt%) on the thermal stability of Ultra high molecular weight polyethylene (UHMWPE), in temperature region 50–600 °C, at 5 °C/min is examined by utilizing the thermogravimetric (TGA/DTA) technique. The activation energies of these thermograms are determined by utilizing the model fitting kinetic method (Coats and Redfern). Through this, 0.4 wt% is found to be the optimum quercetin concentration. UHMWPE sample at optimized quercetin concentration is further subjected to three other heating rates (10, 15 and 20 °C), in same temperature region. The complexities involved in thermal decomposition are resolved by using the deconvolution technique, adopting a bi-Gaussian asymmetric function. Activation energies of these deconvoluted peaks, obtained through Starink and Friedman kinetic models, follow a similar trend. By utilizing activation energy, a random nucleation reaction mechanism involved in thermal decomposition is identified. Finally, the pre-exponential factor, change in entropy (ΔS), change in enthalpy (ΔH) and change in Gibbs free energy (ΔG) are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Gonchikzhapov MB, Paletsky AA, Kuibida LV, Shundrina IK, Korobeinichev OP (2012) Reducing the flammability of ultra-high-molecular-weight polyethylene by triphenyl phosphate additives. Combust Explos Shock Waves 48(5):579–589

    Article  Google Scholar 

  2. Laska A (2017) Comparison of conventional and crosslinked ultra high molecular weight polyethylene (UHMWPE) used in hip implant. World Sci News 73(1):51–60

    CAS  Google Scholar 

  3. Azam AM, Mehmood MS (2017) Thermal stability of ultra high molecular weight polyethylene nano composites with Mg0.15Ni0.15 Zn0.70Fe2O3. J Mater Phys Chem 5(1):39–42

    CAS  Google Scholar 

  4. Bracco P, Bellare A, Bistolfi A, Affatato S (2017) Ultra-high molecular weight polyethylene: influence of the chemical, physical and mechanical properties on the wear behavior—a review. Materials 10(7):791

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mukhtar SS, Mehmood MS, Maqbool SA, Ghafoor B, Baluch MA, Siddiqui N, Yasin T (2018) Effect of γ-irradiation on the thermal properties of UHMWPE/MWCNTs nanocomposites: a comparative study of incorporating unmodified and γ-ray-modified MWCNTs. Bull Mater Sci 41:10

    Article  Google Scholar 

  6. Dayyoub T, Maksimkin AV, Kaloshkin S, Kolesnikov E, Chukov D, Dyachkova TY, Gutnik I (2019) The structure and mechanical properties of the UHMWPE films modified by the mixture of graphene nanoplates with polyaniline. Polymers 11:23

    Article  Google Scholar 

  7. Sobieraj MC, Rimnac CM (2009) Ultra high molecular weight polyethylene: mechanics, morphology, and clinical behavior. J Mech Behav Biomed Mater 2:433–443

    Article  CAS  PubMed  Google Scholar 

  8. Hofste JM, Van Voorn B, Pennings AJ (1997) Mechanical and tribological properties of short discontinuous UHMWPE fiber reinforced UHMWPE. Polym Bull 38:485–492

    Article  CAS  Google Scholar 

  9. Xue Y, Wu W, Jacobs O, Schädel B (2006) Tribological behaviour of UHMWPE/HDPE blends reinforced with multi-wall carbon nanotubes. Polym Test 25:221–229

    Article  CAS  Google Scholar 

  10. Plumlee K, Schwartz CJ (2009) Improved wear resistance of orthopaedic UHMWPE by reinforcement with zirconium particles. Wear 267:710–717

    Article  CAS  Google Scholar 

  11. Guofang G, Huayong Y, Xin F (2004) Tribological properties of kaolin filled UHMWPE composites in unlubricated sliding. Wear 256:88–94

    Article  Google Scholar 

  12. Kurtz S (2004) The UHMWPE Handbook: Ultra-High Molecular Weight Polyethylene Total Joint Replacement. Elsevier

    Google Scholar 

  13. Yun DW, Jang J (2014) Wear minimization of ultra high molecular weight polyethylene by benzophenone-assisted photo crosslinking Fibers. Polym 15(3):480–486

    CAS  Google Scholar 

  14. Wen X, Li Z, Yang C, Yan K, Wu G, Wang D (2022) Electron beam irradiation assisted preparation of UHMWPE fibre with 3D cross-linked structure and outstanding creep resistance. Radiat Phys Chem 199:110370

    Article  CAS  Google Scholar 

  15. Wang H, Xu L, Hu J, Wang M, Wu G (2015) Radiation-induced oxidation of ultra-high molecular weight polyethylene (UHMWPE) powder by gamma rays and electron beams: a clear dependence of dose rate. Radiat Phys Chem 115:88–96

    Article  CAS  Google Scholar 

  16. Wu X, Wu C, Wang G, Jiang P, Zhang J (2013) A crosslinking method of UHMWPE irradiated by electron beam using TMPTMA as radio sensitizer. J Appl Polym Sci 127:111–119

    Article  CAS  Google Scholar 

  17. Ikada Y, Nakamura K, Ogata S, Makino K, Tajima K, Endoh N, Hayashi T, Fujita S, Fujisawa A, Masuda S, Oonishi H (1999) Characterization of ultrahigh molecular weight polyethylene irradiated with γ-rays and electron beams to high doses. J Polym Sci Part A: Polym Chem 37:159–168

    Article  CAS  Google Scholar 

  18. Bracco P, Brunella V, Luda MP, Zanetti M, Costa L (2005) Radiation-induced crosslinking of UHMWPE in the presence of co-agents: chemical and mechanical characterisation. Polymer 46:10648–10657

    Article  CAS  Google Scholar 

  19. Oral E, Ghali BW, Muratoglu OK (2011) The elimination of free radicals in irradiated UHMWPEs with and without vitamin E stabilization by annealing under pressure. J Biomed Mater Res Part B Appl Biomater 97:167–174

    Article  Google Scholar 

  20. Ferroni D, Quaglini V (2010) Thermal stabilization of highly crosslinked UHMWPE: a comparative study between annealed and remelted resins. J Appl Biomater Biomech 8:82–88

    CAS  PubMed  Google Scholar 

  21. Visco AM, Campo N, Brancato V, Trimarchi M (2013) Influence of α-tocopherol load and annealing treatment on the wear resistance of biomedical UHMWPE irradiated with electron beam. Int J Polym Anal Charact 18:545–556

    Article  CAS  Google Scholar 

  22. Ors-Unsal A, Archodoulaki VM (2020) Comparison of in-vivo performance characteristics of first and second-generation cross-linked and conventional explants. J Arthroplasty 35:3330–3337

    Article  PubMed  Google Scholar 

  23. Helberg J, Pratt DA (2021) Autoxidation vs. antioxidants–the fight for forever. Chem Soc Rev 50:7343–7358

    Article  CAS  PubMed  Google Scholar 

  24. Hope N, Bellare A (2015) A comparison of the efficacy of various antioxidants on the oxidative stability of irradiated polyethylene. Clin Orthop Relat Res 473:936–941

    Article  PubMed  Google Scholar 

  25. Allam SS, Mohamed HM (2002) Thermal stability of some commercial natural and synthetic antioxidants and their mixtures. J Food Lipid 9:277–293

    Article  CAS  Google Scholar 

  26. Narayan VS (2015) Spectroscopic and chromatographic quantification of an antioxidant-stabilized ultrahigh-molecular-weight polyethylene. Clin Orthop Relat Res 473:952–959

    Article  PubMed  Google Scholar 

  27. Xiao C, Zhang Y, An S, Jia G (2000) Effects of phenolic antioxidants on ultrahigh molecular weight polyethylene/decalin solution. J Appl Polym Sci 77:2877–2881

    Article  CAS  Google Scholar 

  28. Bolbukh Y, Kuzema P, Tertykh V, Laguta I (2008) Thermal degradation of polyethylene containing antioxidant and hydrophilic/hydrophobic silica. J Therm Anal Calorim 94:727–736

    Article  CAS  Google Scholar 

  29. Wolf C, Krivec T, Blassnig J, Lederer K, Schneider W (2002) Examination of the suitability of α-tocopherol as a stabilizer for ultra-high molecular weight polyethylene used for articulating surfaces in joint endoprostheses. J Mater Sci Mater Med 13:185–189

    Article  CAS  PubMed  Google Scholar 

  30. Bracco P, Brunella V, Zanetti M, Luda MP, Costa L (2007) Stabilisation of ultra-high molecular weight polyethylene with vitamin E. Polym Degrad Stab 92:2155–2162

    Article  CAS  Google Scholar 

  31. Souza VC, Santos EB, Mendonça AV, Silva LB (2018) Thermal behaviour and decomposition kinetic studies of biomedical UHMWPE/vitamin C compounds. J Therm Anal Calorim 134:2097–2105

    Article  CAS  Google Scholar 

  32. Fu J, Shen J, Gao G, Xu Y, Hou R, Cong Y, Cheng Y (2013) Natural polyphenol-stabilised highly crosslinked UHMWPE with high mechanical properties and low wear for joint implants. J Mater Chem B 1:4727–4735

    Article  CAS  PubMed  Google Scholar 

  33. Costa L, Carpentieri I, Bracco P (2009) Post electron-beam irradiation oxidation of orthopaedic Ultra-High Molecular Weight Polyethylene (UHMWPE) stabilized with vitamin E. Polym Degrad Stab 94:1542–1547

    Article  CAS  Google Scholar 

  34. Tátraaljai D, Földes E, Pukánszky B (2014) Efficient melt stabilization of polyethylene with quercetin, a flavonoid type natural antioxidant. Polym Degrad Stab 102:41–48

    Article  Google Scholar 

  35. Molinelli A, Weiss R, Mizaikoff B (2002) Advanced solid phase extraction using molecularly imprinted polymers for the determination of quercetin in red wine. J Agric Food Chem 50:1804–1808

    Article  CAS  PubMed  Google Scholar 

  36. Kang X, Zong X, Zhang P, Zeng X, Liu Y, Yao C, Wang T, Feng P, Yang C (2021) Effects of epigallocatechin gallate incorporation in UHMWPE on biological behavior, oxidative degradation, mechanical and tribological performance for biomedical applications. Tribol Int 158:106887

    Article  CAS  Google Scholar 

  37. Van Mourik JH (1965) Experiences with silica gel as adsorbent. Am Ind Hyg Assoc J 26:498–509

    Article  Google Scholar 

  38. Haines PJ (1995) Thermal Methods of Analysis: Principles, Applications and Problems. Blackie Academic & Professional, Dordrecht

    Book  Google Scholar 

  39. Coats AW, Redfern JP (1964) Kinetic parameters from thermogravimetric data. Nature 201:68–69

    Article  CAS  Google Scholar 

  40. Flynn JH, Wall LA (1966) A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci B: Polym Lett 4(1966):323–328

    Article  CAS  Google Scholar 

  41. Ozawa T (1965) A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn 38:1881–1886

    Article  CAS  Google Scholar 

  42. Kissinger HE (1957) Reaction kinetics in differential thermal analysis. Anal Chem 29(11):1702–1706

    Article  CAS  Google Scholar 

  43. Akahira TJ, Sunose T (1971) Method of determining activation deterioration constant of electrical insulating materials. Res Rep Chiba Inst Technol 16:22–31

    Google Scholar 

  44. Starink MJ (2003) The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta 404:163–176

    Article  CAS  Google Scholar 

  45. Friedman HL (1964) Kinetics of thermal degradation of char-forming plastics from thermogravimetry: application to a phenolic plastic. J Polym Sci Part C, Polym Symp 6:183–195

    Article  Google Scholar 

  46. Norwisz J, Hajduk N (1978) The accuracy of equations approximating the temperature integral part I. J Therm Anal 13:223–230

    Article  Google Scholar 

  47. Hajduk N, Norwisz J (1979) The accuracy of equations approximating the temperature integral. Part II J Therm Anal 16:193–195

    Article  CAS  Google Scholar 

  48. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N (2011) ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta 520:1–19

    Article  CAS  Google Scholar 

  49. Martínez-Morlanes MJ, Medel FJ, Mariscal MD, Puértolas PJA (2010) On the assessment of oxidative stability of post-irradiation stabilized highly crosslinked UHMWPEs by thermogravimetry. Polym Test 29:425–432

    Article  Google Scholar 

  50. Bracco P, Del Prever EB, Cannas M, Luda MP, Costa L (2006) Oxidation behaviour in prosthetic UHMWPE components sterilised with high energy radiation in a low-oxygen environment. Polym Degrad Stab 91:2030–2038

    Article  CAS  Google Scholar 

  51. Shafiq M, Mehmood MS, Yasin T (2013) On the structural and physicochemical properties of gamma irradiated UHMWPE/silane hybrid. Mater Chem Phys 143:425–433

    Article  CAS  Google Scholar 

  52. Costa L, Bracco P (2016) Mechanisms of cross-linking, oxidative degradation, and stabilization of UHMWPE. In: UHMWPE Biomaterials Handbook. William Andrew Publishing, Philadelphia

  53. Singh RK, Ruj B, Sadhukhan AK, Gupta P (2017) Impact of fast and slow pyrolysis on the degradation of mixed plastic waste: product yield analysis and their characterization. J Energy Inst 92:1647–1657

    Article  Google Scholar 

  54. Kumar S, Panda AK, Singh RK (2011) A review on tertiary recycling of high-density polyethylene to fuel. Resour Conserv Recycl 55:893–910

    Article  Google Scholar 

  55. Padrón AJ, Colmenares MA, Rubinztain Z, Albornoz LA (1987) Influence of additives on some physical properties of high density polyethylene-I. Commercial antioxidants Eur Polym J 23:723–727

    Article  Google Scholar 

  56. Sharma P, Kaur T, Pandey OP (2019) In situ single-step reduction and silicidation of MoO3 to form MoSi2. J Am Ceram 102:1522–1534

    Article  CAS  Google Scholar 

  57. Xu J, Reiter G, Alamo RG (2021) Concepts of nucleation in polymer crystallization. Crystals 11:304

    Article  CAS  Google Scholar 

  58. Georgieva V, Zvezdova D, Vlaev L (2013) Non-isothermal kinetics of thermal degradation of chitin. J Therm Anal Calorim 111:763–771

    Article  CAS  Google Scholar 

  59. Sharma P, Pandey OP, Diwan PK (2019) Non-isothermal kinetics of pseudo-components of waste biomass. Fuel 253:1149–1161

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. K. Diwan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3989 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khattar, N., Jagriti, Sharma, P. et al. Impact of quercetin concentration on the thermal stability of ultra high molecular weight polyethylene: a thermogravimetric study. Reac Kinet Mech Cat 136, 2815–2834 (2023). https://doi.org/10.1007/s11144-023-02472-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-023-02472-2

Keywords

Navigation