Skip to main content
Log in

Density functional theory study of N2O decomposition catalyzed by Pd4−/0/+ clusters

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Density functional theory (DFT) is used to investigate the N2O decomposition over Pd4−/0/+ clusters. The Eley–Rideal (ER) mechanism and the Langmuir–Hinshelwood (LH) mechanism are well established. The average binding energies show that the most stable structure of Pd4−/0/+ clusters is the tetrahedral configuration. For the Pd4 cluster, the activation energies indicate that the rate-limiting step in two mechanisms is the formation of O2, and the ER mechanism occurs more easily than the LH mechanism. While for the Pd40 and Pd4+ clusters, the rate-limiting step in two mechanisms is the N2O decomposition to N2, and the LH mechanism is more likely to process. Among all clusters, the Pd4 cluster exhibits better catalytic activity compared with the Pd40 and Pd4+ clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Itokawa H, Hanaki K, Matsuo T (2001) Nitrous oxide production in high-loading biological nitrogen removal process under low cod/n ratio condition. Water Res 35(3):657–664. https://doi.org/10.1016/S0043-1354(00)00309-2

    Article  CAS  PubMed  Google Scholar 

  2. Yan X, Zheng SK, Qiu DZ, Yang J, Han YP, Huo ZM, Su XF, Sun JH (2019) Characteristics of N2O generation within the internal micro-environment of activated sludge flocs under different dissolved oxygen concentrations. Bioresour Technol 291:121867. https://doi.org/10.1016/j.biortech.2019.121867

    Article  CAS  PubMed  Google Scholar 

  3. Tian HQ et al (2020) A comprehensive quantification of global nitrous oxide sources and sinks. Nature 586:248–256. https://doi.org/10.1038/s41586-020-2780-0

    Article  CAS  PubMed  Google Scholar 

  4. Shakoor A et al (2021) Effect of animal manure, crop type, climate zone, and soil attributes on greenhouse gas emissions from agricultural soils-A global meta-analysis. J Clean Prod 278:124019. https://doi.org/10.1016/j.jclepro.2020.124019

    Article  CAS  Google Scholar 

  5. Tanaka S, Yuzaki K, Ito S, Kameoka S, Kunimori K (2001) Mechanism of O2 desorption during N2O decomposition on an oxidized Rh/USY catalyst. J Catal 200(2):203–208. https://doi.org/10.1006/jcat.2001.3197

    Article  CAS  Google Scholar 

  6. Yamashita T, Vannice A (1996) N2O decomposition over manganese oxides. J Catal 161(1):254–262. https://doi.org/10.1006/jcat.1996.0183

    Article  CAS  Google Scholar 

  7. Francisco H, Bertin V, Soto JR, Castro M (2016) Charge and geometrical effects on the catalytic N2O reduction by Rh6- and Rh6+ clusters. J Phys Chem C 120(41):23648–23659. https://doi.org/10.1021/acs.jpcc.6b08172

    Article  CAS  Google Scholar 

  8. Wu LY, Chen C, Luo L, Wang YC, Yin B (2020) DFT Study of the reaction mechanism of N2O decomposition on Au3+/0/- clusters. ChemistrySelect 5:5391–5399. https://doi.org/10.1002/slct.202000752

    Article  CAS  Google Scholar 

  9. Lian X, Guo WL, Nie Y, Xu P, Yi H, He B, Chen SK (2019) A density functional study of water dissociation on small cationic, neutral, and anionic Ni-based alloy clusters. Chem Phys 521:44–50. https://doi.org/10.1016/j.chemphys.2019.01.019

    Article  CAS  Google Scholar 

  10. Omrani M, Goriaux M, Liu Y, Martinet S, Jean-Soro L, Ruban V (2020) Platinum group elements study in automobile catalysts and exhaust gas samples. Environ Pollut 257:113477. https://doi.org/10.1016/j.envpol.2019.113477

    Article  CAS  PubMed  Google Scholar 

  11. Cao YD, Ran R, Wu XD, Si ZC, Kang FY, Weng D (2022) Progress on metal-support interactions in Pd-based catalysts for automobile emission control. J Environ Sci 125:401–426. https://doi.org/10.1016/j.jes.2022.01.011

    Article  Google Scholar 

  12. Kim K, Baek S, Kim JJ, Han JW (2020) Catalytic decomposition of N2O on PdxCuy alloy catalysts: a density functional theory study. Appl Surf Sci 510:145349. https://doi.org/10.1016/j.apsusc.2020.145349

    Article  CAS  Google Scholar 

  13. Xing W, Yang XF, Wang AQ, Li L, Liu XY, Zhang T, Mou CY, Li J (2012) Bimetallic Au-Pd alloy catalysts for N2O dissociation: effects of surface structures on catalytic activity. J Phys Chem C 116(10):6222–6232. https://doi.org/10.1021/jp210555s

    Article  CAS  Google Scholar 

  14. Kokalj A (2003) N2O interaction with Pd(110): cluster vs. slab model. Surf Sci 532–535:213–220. https://doi.org/10.1016/S0039-6028(03)00460-6

    Article  CAS  Google Scholar 

  15. Hintz PA, Ervin KM (1995) Chemisorption and oxidation reactions of nickel group cluster anions with N2, O2, CO2, and N2O. J Chem Phys 103(18):7897–7906. https://doi.org/10.1063/1.470207

    Article  CAS  Google Scholar 

  16. Parres-Esclapez S, Illán-Gómez MJ, Lecea SMD, Bueno-López A (2010) On the importance of the catalyst redox properties in the N2O decomposition over alumina and ceria supported Rh, Pd and Pt. Appl Catal B 96(3–4):370–378. https://doi.org/10.1016/j.apcatb.2010.02.034

    Article  CAS  Google Scholar 

  17. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09. Revision B.01.01. Gaussian Inc., Wallingford

  18. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys Rev B 46(11):6671–6687. https://doi.org/10.1103/physrevb.46.6671

    Article  CAS  Google Scholar 

  19. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 78:1396. https://doi.org/10.1103/PhysRevLett.77.3865

    Article  Google Scholar 

  20. Curtiss LA, McGrath MP, Blaudeau JP, Davis NE, Binning RC, Radom L (1995) Extension of Gaussian-2 theory to molecules containing third-row atoms Ga-Kr. J Chem Phys 103:6104–6113. https://doi.org/10.1063/1.470438

    Article  CAS  Google Scholar 

  21. Cao XY, Dolg M (2002) Segmented contraction scheme for small-core lanthanide pseudopotential basis sets. J Mol Struct (Thoechem) 581:139–147. https://doi.org/10.1016/j.theochem.2003.12.015

    Article  CAS  Google Scholar 

  22. Camacho-Mendoza RL, Cruz-Borbolla J (2020) Reaction mechanism for hydrogen production using the Pd4 cluster and formic acid by DFT. Chem Phys Lett 755:137794. https://doi.org/10.1016/j.cplett.2020.137794

    Article  CAS  Google Scholar 

  23. Yu WL, Zuo HW, Lu CH, Li Y, Zhang YF, Chen WK (2015) Nitrous oxide decomposition catalyzed by Au19Pd and Au19Pt clusters. Acta Phys Chim Sin 31(3):425–434. https://doi.org/10.3866/PKU.WHXB201501191

    Article  CAS  Google Scholar 

  24. Derdare M, Boudjahem AG, Boulbazine M (2022) Adsorption and decomposition mechanism of N2O molecule over MC23 (M=Ru, Mn, V, Pd, and Rh) nanoclusters: a comparative DFT investigation. Struct Chem 33:2043–2062. https://doi.org/10.1007/s11224-022-01984-2

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Science and Technology Research Program of Chongqing Municipal Education Commission (KJQN202101517).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Lian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 30696 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, X., Zeng, W., Duan, H. et al. Density functional theory study of N2O decomposition catalyzed by Pd4−/0/+ clusters. Reac Kinet Mech Cat 136, 1933–1943 (2023). https://doi.org/10.1007/s11144-023-02456-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-023-02456-2

Keywords

Navigation