Skip to main content
Log in

Preparation of lactic acid and acetic acid via hydrothermal conversion of wheat straw with Cu/C-P biochar catalyst

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

In order to maximize the utilization of biomass waste, a Cu/C-P biochar catalyst prepared by supporting copper on the pyrolysis char derived from wheat straw was used in the hydrothermal conversion of wheat straw to prepare lactic acid and acetic acid. The catalyst was characterized using scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy methods. The effects of Cu loading, reaction time, reaction temperature, and catalyst dosage on the yield of lactic acid and acetic acid were studied to optimize the reaction conditions. Results showed that Cu/C-P had a noticeable catalytic effect on the hydrothermal catalytic conversion of wheat straw, with the yield of lactic acid increasing by 37.68% and the yield of acetic acid increasing by 30.58%. CuO was generated and loaded on the biochar acting as the active site of the catalyst and interacted with soluble oligomers and glucose in solution to form lactic acid and acetic acid. The interaction of oxygen-containing functional groups on the surface of the biochar with active sites Cu0 and Cu2O, which played the role of co-catalyst, improved the catalytic activity and effectively promoted the generation of lactic acid and acetic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the paper and its Supplementary Information files. Should any raw data files be needed in another format they are available from the corresponding author upon reasonable request. Source data are provided with this paper.

References

  1. Sansaniwal SK, Rosen MA, Tyagi SK (2017) Global challenges in the sustainable development of biomass gasification: an overview. Renew Sustain Energy Rev 80:23–43. https://doi.org/10.1016/j.rser.2017.05.215

    Article  Google Scholar 

  2. Pang S (2019) Advances in thermochemical conversion of woody biomass to energy, fuels and chemicals. Biotechnol Adv 37:589–597

    Article  CAS  PubMed  Google Scholar 

  3. Kumar A, Kumar J, Bhaskar T (2020) Utilization of lignin: a sustainable and eco-friendly approach. J Energy Inst 93:235–271. https://doi.org/10.1016/j.joei.2019.03.005

    Article  CAS  Google Scholar 

  4. Shaikh WA, Kumar A, Chakraborty S et al (2022) Removal of toxic dye from dye-laden wastewater using a new nanocomposite material: isotherm, kinetics and adsorption mechanism. Chemosphere 308:136413

    Article  CAS  PubMed  Google Scholar 

  5. Aragaw TA, Bogale FM (2021) Biomass-based adsorbents for removal of dyes from wastewater: a review. Front Environ Sci. https://doi.org/10.3389/fenvs.2021.764958

    Article  Google Scholar 

  6. Kumar A, Bhattacharya T, Shaikh WA, Chakraborty S, Owens G, Naushad M (2022) Valorization of fruit waste-based biochar for arsenic removal in soils. Environ Res 213:113710

    Article  CAS  PubMed  Google Scholar 

  7. Kumar A, Bhattacharya T, Mozammil Hasnain SM, Kumar Nayak A, Hasnain MS (2020) Applications of biomass-derived materials for energy production, conversion, and storage. Mater Sci Energy Technol 3:905–920

    CAS  Google Scholar 

  8. Shan R, Han J, Gu J, Yuan H, Luo B, Chen Y (2020) A review of recent developments in catalytic applications of biochar-based materials. Resour Conserv Recycl. https://doi.org/10.1016/j.resconrec.2020.105036

    Article  Google Scholar 

  9. Kostić MD, Bazargan A, Stamenković OS, Veljković VB, McKay G (2016) Optimization and kinetics of sunflower oil methanolysis catalyzed by calcium oxide-based catalyst derived from palm kernel shell biochar. Fuel 163:304–313. https://doi.org/10.1016/j.fuel.2015.09.042

    Article  CAS  Google Scholar 

  10. Cao X, Sun S, Sun R (2017) Application of biochar-based catalysts in biomass upgrading: a review. RSC Adv 7:48793–48805. https://doi.org/10.1039/c7ra09307a

    Article  CAS  Google Scholar 

  11. Wei Y, Shen C, Xie J, Bu Q (2020) Study on reaction mechanism of superior bamboo biochar catalyst production by molten alkali carbonates pyrolysis and its application for cellulose hydrolysis. Sci Total Environ 712:136435. https://doi.org/10.1016/j.scitotenv.2019.136435

    Article  CAS  PubMed  Google Scholar 

  12. Liu Y, Nie Y, Lu X et al (2019) Cascade utilization of lignocellulosic biomass to high-value products. Green Chem 21:3499–3535. https://doi.org/10.1039/C9GC00473D

    Article  CAS  Google Scholar 

  13. Sherwood J (2020) The significance of biomass in a circular economy. Bioresour Technol 300:122755. https://doi.org/10.1016/j.biortech.2020.122755

    Article  CAS  PubMed  Google Scholar 

  14. Din NAS, Lim SJ, Maskat MY, Mohd Zaini NA (2022) Microbial D-lactic acid production, in situ separation and recovery from mature and young coconut husk hydrolysate fermentation broth. Biochem Eng J 188:108680

    Article  CAS  Google Scholar 

  15. Tufail T, Saeed F, Afzaal M et al (2021) Wheat straw: a natural remedy against different maladies. Food Sci Nutr 9:2335–2344. https://doi.org/10.1002/fsn3.2030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chang C, Deng L, Xu G (2018) Efficient conversion of wheat straw into methyl levulinate catalyzed by cheap metal sulfate in a biorefinery concept. Ind Crops Prod 117:197–204. https://doi.org/10.1016/j.indcrop.2018.03.009

    Article  CAS  Google Scholar 

  17. Xu S, Pan D, Wu Y et al (2019) Direct conversion of wheat straw components into furan compounds using a highly efficient and reusable SnCl2-PTA/β zeolite catalyst. Ind Eng Chem Res 58:9276–9285. https://doi.org/10.1021/acs.iecr.9b00984

    Article  CAS  Google Scholar 

  18. Heda J, Niphadkar P, Mudliar S, Bokade V (2020) Highly efficient micro-meso acidic H-USY catalyst for one step conversion of wheat straw to ethyl levulinate (biofuel additive). Microporous Mesoporous Mater 306:110474. https://doi.org/10.1016/j.micromeso.2020.110474

    Article  CAS  Google Scholar 

  19. Xu S, Pan D, Wu Y et al (2018) Efficient production of furfural from xylose and wheat straw by bifunctional chromium phosphate catalyst in biphasic systems. Fuel Process Technol 175:90–96. https://doi.org/10.1016/j.fuproc.2018.04.005

    Article  CAS  Google Scholar 

  20. Nkosi DV, Bekker JL, Hoffman LC (2021) The use of organic acids (lactic and acetic) as a microbial decontaminant during the slaughter of meat animal species: a review. Foods. https://doi.org/10.3390/foods10102293

  21. Kwan TH, Hu Y, Lin CSK (2018) Techno-economic analysis of a food waste valorisation process for lactic acid, lactide and poly (lactic acid) production. J Clean Prod 181:72–87. https://doi.org/10.1016/j.jclepro.2018.01.179

    Article  CAS  Google Scholar 

  22. Németh Á, Vidra A (2017) Bio-produced acetic acid: a review. Periodica Polytech, Chem Eng 62:245–256. https://doi.org/10.3311/PPch.11004

    Article  Google Scholar 

  23. Van Wouwe P, Dusselier M, Vanleeuw E, Sels B (2016) Lactide synthesis and chirality control for polylactic acid production. Chemsuschem 9:907–921. https://doi.org/10.1002/cssc.201501695

    Article  CAS  PubMed  Google Scholar 

  24. Iglesias J, Moreno J, Morales G et al (2019) Sn–Al-USY for the valorization of glucose to methyl lactate: switching from hydrolytic to retro-aldol activity by alkaline ion exchange. Green Chem 21:5876–5885. https://doi.org/10.1039/c9gc02609f

    Article  CAS  Google Scholar 

  25. Komesu A, Maciel M, Filho R (2017) Separation and purification technologies for lactic acid – a brief review. BioResources 12:6885–6901. https://doi.org/10.15376/biores.12.3.6885-6901

    Article  CAS  Google Scholar 

  26. Nayak J, Pal P (2013) Transforming waste cheese-whey into acetic acid through a continuous membrane-integrated hybrid process. Ind Eng Chem Res 52:2977–2984. https://doi.org/10.1021/ie3033729

    Article  CAS  Google Scholar 

  27. Alper K, Tekin K, Karagöz S, Ragauskas AJ (2020) Sustainable energy and fuels from biomass: a review focusing on hydrothermal biomass processing. Sustain Energy Fuels 4:4390–4414. https://doi.org/10.1039/d0se00784f

    Article  CAS  Google Scholar 

  28. Younas R, Zhang S, Zhang L et al (2016) Lactic acid production from rice straw in alkaline hydrothermal conditions in presence of NiO nanoplates. Catal Today 274:40–48. https://doi.org/10.1016/j.cattod.2016.03.052

    Article  CAS  Google Scholar 

  29. Jin F, Zhou Z, Kishita A, Enomoto H, Kishida H, Moriya T (2007) A New hydrothermal process for producing acetic acid from biomass waste. Chem Eng Res Des 85:201–206. https://doi.org/10.1205/cherd06020

    Article  CAS  Google Scholar 

  30. Lin J-C, Mariuzza D, Volpe M, Fiori L, Ceylan S, Goldfarb JL (2021) Integrated thermochemical conversion process for valorizing mixed agricultural and dairy waste to nutrient-enriched biochars and biofuels. Bioresour Technol 328:124765

    Article  CAS  PubMed  Google Scholar 

  31. Guo X, Li H, Yan H et al (2019) Production of organic carboxylic acids by hydrothermal conversion of electron beam irradiation pretreated wheat straw. Biomass Convers Biorefinery 10:997–1006. https://doi.org/10.1007/s13399-019-00471-9

    Article  CAS  Google Scholar 

  32. Wu S, Chen Y, Chen Z, Wang J, Cai M, Gao J (2021) Shape-stabilized phase change material with highly thermal conductive matrix developed by one-step pyrolysis method. Sci Rep 11:822. https://doi.org/10.1038/s41598-021-80964-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen Z, Shan F, Cao L, Fang G (2012) Synthesis and thermal properties of shape-stabilized lauric acid/activated carbon composites as phase change materials for thermal energy storage. Sol Energy Mater Sol Cells 102:131–136. https://doi.org/10.1016/j.solmat.2012.03.013

    Article  CAS  Google Scholar 

  34. Zhu Y, Chi Y, Liang S et al (2018) Novel metal coated nanoencapsulated phase change materials with high thermal conductivity for thermal energy storage. Sol Energy Mater Sol Cells 176:212–221. https://doi.org/10.1016/j.solmat.2017.12.006

    Article  CAS  Google Scholar 

  35. Meghana S, Kabra P, Chakraborty S, Padmavathy N (2015) Understanding the pathway of antibacterial activity of copper oxide nanoparticles. RSC Adv 5:12293–12299. https://doi.org/10.1039/c4ra12163e

    Article  CAS  Google Scholar 

  36. Vinod Kumar V, Dharani A, Mariappan M, Anthony SP (2016) Synthesis of CuO and Cu2O nano/microparticles from a single precursor: effect of temperature on CuO/Cu2O formation and morphology dependent nitroarene reduction. RSC Adv 6:85083–85090. https://doi.org/10.1039/c6ra16553b

    Article  CAS  Google Scholar 

  37. Xiong L, Xiao H, Chen S et al (2014) Fast and simplified synthesis of cuprous oxide nanoparticles: annealing studies and photocatalytic activity. RSC Adv 4:62115–62122. https://doi.org/10.1039/c4ra12406e

    Article  CAS  Google Scholar 

  38. Prajapati JP, Das D, Katlakunta S, Maramu N, Ranjan V, Mallick S (2021) Synthesis and characterization of ultrasmall Cu2O nanoparticles on silica nanoparticles surface. Inorg Chim Acta. https://doi.org/10.1016/j.ica.2020.120069

    Article  Google Scholar 

  39. Hu H, Sun L, Jiang B, Wu H, Huang Q, Chen X (2018) Low concentration Re(VII) recovery from acidic solution by Cu-biochar composite prepared from bamboo (Acidosasa longiligula) shoot shell. Miner Eng 124:123–136. https://doi.org/10.1016/j.mineng.2018.05.021

    Article  CAS  Google Scholar 

  40. Fang S, Cui Z, Zhu Y et al (2019) In situ synthesis of biomass-derived Ni/C catalyst by self-reduction for the hydrogenation of levulinic acid to γ-valerolactone. J Energy Chem 37:204–214. https://doi.org/10.1016/j.jechem.2019.03.021

    Article  Google Scholar 

  41. Deng L, Chang C, An R, Qi X, Xu G (2017) Metal sulfates-catalyzed butanolysis of cellulose: butyl levulinate production and optimization. Cellulose 24:5403–5415. https://doi.org/10.1007/s10570-017-1530-4

    Article  CAS  Google Scholar 

  42. Deng, L. (2018) Study on the alcoholysis of wheat straw to methyl levulinate catalyzed by copper sulfateed^eds, Zhengzhou: Zhengzhou University. https://kns.cnki.net

  43. Moulder, J.F., Stickle, W.F., Sobol, W.M., Bomben, K.D. (1992) Handbook of X-Ray Photoelectron Spectroscopy.

  44. NIST X-ray Photoelectron Spectroscopy Database, (2000) NIST Standard Reference Database Number 20, National Institute of Standards and Technology, Gaithersburg MD, 20899. https://doi.org/10.18434/T4T88K.

  45. Biesinger MC (2017) Advanced analysis of copper X-ray photoelectron spectra. Surf Interface Anal 49:1325–1334. https://doi.org/10.1002/sia.6239

    Article  CAS  Google Scholar 

  46. Zhang P, Song T, Wang T, Zeng H (2017) In-situ synthesis of Cu nanoparticles hybridized with carbon quantum dots as a broad spectrum photocatalyst for improvement of photocatalytic H2 evolution. Appl Catal B 206:328–335. https://doi.org/10.1016/j.apcatb.2017.01.051

    Article  CAS  Google Scholar 

  47. Zhang P, Wang T, Zeng H (2017) Design of Cu-Cu 2 O/g-C 3 N 4 nanocomponent photocatalysts for hydrogen evolution under visible light irradiation using water-soluble erythrosin B dye sensitization. Appl Surf Sci 391:404–414. https://doi.org/10.1016/j.apsusc.2016.05.162

    Article  CAS  Google Scholar 

  48. Sun G, Jia S, Zhang X et al (2021) Anchoring core-shell Cu@Cu2O nanoparticles to two-dimensional carbon nanosheets for bacterial disinfection. ACS Appl Nano Mater 4:9831–9841. https://doi.org/10.1021/acsanm.1c02233

    Article  CAS  Google Scholar 

  49. Platzman I, Brener R, Haick H, Tannenbaum R (2008) Oxidation of polycrystalline copper thin films at ambient conditions. J Phys Chem C 112:1101–1108. https://doi.org/10.1021/jp076981k

    Article  CAS  Google Scholar 

  50. Liu P, Hensen EJM (2013) Highly efficient and robust Au/MgCuCr2O4 catalyst for gas-phase oxidation of ethanol to acetaldehyde. J Am Chem Soc 135:14032–14035. https://doi.org/10.1021/ja406820f

    Article  CAS  PubMed  Google Scholar 

  51. Zhang P, Song T, Wang T, Zeng H (2018) Plasmonic Cu nanoparticle on reduced graphene oxide nanosheet support: an efficient photocatalyst for improvement of near-infrared photocatalytic H2 evolution. Appl Catal B 225:172–179. https://doi.org/10.1016/j.apcatb.2017.11.076

    Article  CAS  Google Scholar 

  52. Wijayanti K, Xie K, Kumar A, Kamasamudram K, Olsson L (2017) Effect of gas compositions on SO2 poisoning over Cu/SSZ-13 used for NH3-SCR. Appl Catal B 219:142–154. https://doi.org/10.1016/j.apcatb.2017.07.017

    Article  CAS  Google Scholar 

  53. Li W, Wang Z, Liao H et al (2021) Enhanced degradation of 2,4,6-trichlorophenol by activated peroxymonosulfate with sulfur doped copper manganese bimetallic oxides. Chem Eng J. https://doi.org/10.1016/j.cej.2020.128121

    Article  PubMed  PubMed Central  Google Scholar 

  54. Poreddy R, Engelbrekt C, Riisager A (2015) Copper oxide as efficient catalyst for oxidative dehydrogenation of alcohols with air. Catal Sci Technol 5(4):2467–2477. https://doi.org/10.1039/C4CY01622J

    Article  CAS  Google Scholar 

  55. Jin Y, Lai C, Li Y, Cheng X (2020) Preparation and catalytic performance of biomass-based solid acid catalyst from Pennisetum sinense for cellulose hydrolysis. Int J Biol Macromol 165:1149–1155. https://doi.org/10.1016/j.ijbiomac.2020.09.256

    Article  CAS  PubMed  Google Scholar 

  56. Guo H, Qi X, Li L, Smith RL Jr (2012) Hydrolysis of cellulose over functionalized glucose-derived carbon catalyst in ionic liquid. Biores Technol 116:355–359. https://doi.org/10.1016/j.biortech.2012.03.098

    Article  CAS  Google Scholar 

  57. Guo H, Lian Y, Yan L, Qi X, Smith RL (2013) Cellulose-derived superparamagnetic carbonaceous solid acid catalyst for cellulose hydrolysis in an ionic liquid or aqueous reaction system. Green Chem. https://doi.org/10.1039/c3gc40433a

    Article  Google Scholar 

  58. Wattanapaphawong P, Reubroycharoen P, Yamaguchi A (2017) Conversion of cellulose into lactic acid using zirconium oxide catalysts. RSC Adv 7:18561–18568. https://doi.org/10.1039/c6ra28568f

    Article  CAS  Google Scholar 

  59. Zhang S-P, Jin F, Hu J, Zhang W (2017) Role of metallic Zn, Ni and activated carbon additives in improving the hydrothermal conversion of glucose into lactic acid. J Chem Technol Biotechnol 92:1046–1052. https://doi.org/10.1002/jctb.5080

    Article  CAS  Google Scholar 

Download references

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoya Guo.

Ethics declarations

Competing Interests

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, X., Chen, Y., Wang, S. et al. Preparation of lactic acid and acetic acid via hydrothermal conversion of wheat straw with Cu/C-P biochar catalyst. Reac Kinet Mech Cat 136, 1437–1453 (2023). https://doi.org/10.1007/s11144-023-02418-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-023-02418-8

Keywords

Navigation