Skip to main content
Log in

Experimental and theoretical investigation of enhancing the photocatalytic activity of Mg doped ZnO for nitrophenol degradation

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Magnesium-doped ZnO nanoparticles (Mg0.1Zn0.9O) were successfully synthesized following the solution combustion method. The effect of magnesium on the morphology, crystalline phases, and optical properties of the ZnO nanoparticles was studied. A relative band gap enhancement has been observed using the density functional theory (DFT) calculation through Mg doping from 3.19 eV to 3.24 eV. The photocatalytic degradation of 4-nitrophenol (4-NPh) has been investigated under UV irradiation in aqueous suspension where 1.5 g of Mg0.1Zn 0.9O/L removed 81% of 4-NPh (60 mg/L) under a pH solution of 12 within 120 min.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Benkhaya S, M’rabet S, El Harfi A (2020) A review on classifications, recent synthesis and applications of textile dyes. Inorg Chem Commun 115:107891. https://doi.org/10.1016/J.INOCHE.2020.107891

    Article  CAS  Google Scholar 

  2. Gonçalves IMC, Gomes A, Brás R et al (2000) Biological treatment of effluent containing textile dyes. Color Technol 116:393–397. https://doi.org/10.1111/j.1478-4408.2000.tb00016.x

    Article  Google Scholar 

  3. Chequer FMD, de Oliveira GAR, Ferraz ERA et al (2013) Textile dyes: dyeing process and environmental impact. Eco-Friendly Text Dye Finish. https://doi.org/10.5772/53659

    Article  Google Scholar 

  4. El Hajam M, Kandri NI, Plavan GI et al (2020) Pb2+ ions adsorption onto raw and chemically activated dibetou sawdust: application of experimental designs. J King Saud Univ—Sci 32:2176–2189. https://doi.org/10.1016/J.JKSUS.2020.02.027

    Article  Google Scholar 

  5. El Hajam M, Idrissi Kandri N, Harrach A et al (2019) Adsorption of Methylene Blue on industrial softwood waste “Cedar” and hardwood waste “Mahogany”: comparative study. Mater Today Proc 13:812–821. https://doi.org/10.1016/J.MATPR.2019.04.044

    Article  Google Scholar 

  6. Gita S, Hussan A, Choudhury TG (2017) Impact of textile dyes waste on aquatic environments and its treatment. Environ Ecol 35:2349–2353

    Google Scholar 

  7. Dra A, Tanji K, Arrahli A et al (2020) Valorization of oued sebou natural sediments (Fez-Morocco area) as adsorbent of methylene blue dye : kinetic and thermodynamic study. Sci World J 2020:2187129. https://doi.org/10.1155/2020/2187129

    Article  CAS  Google Scholar 

  8. Ghosh Ray S, Ghangrekar MM (2018) Comprehensive review on treatment of high-strength distillery wastewater in advanced physico-chemical and biological degradation pathways. Int J Environ Sci Technol 161(16):527–546. https://doi.org/10.1007/S13762-018-1786-8

    Article  Google Scholar 

  9. Thiam A, Tanji K, Assila O et al (2020) Valorization of date pits as an effective biosorbent for remazol brilliant blue adsorption from aqueous solution. J Chem 2020:14. https://doi.org/10.1155/2020/4173152

    Article  CAS  Google Scholar 

  10. Puvaneswari N, Muthukrishnan J, Gunasekaran P (2006) Toxicity assessment and microbial degradation of azo dyes. Indian J Exp Biol 44:618–626

    CAS  PubMed  Google Scholar 

  11. Ejder-Korucu M, Gürses A, Dogar Ç et al (2015) Removal of organic dyes from industrial effluents: an overview of physical and biotechnological applications. Green Chem Dye Remov Waste Water Res Trends Appl. https://doi.org/10.1002/9781118721001.CH1

    Article  Google Scholar 

  12. Balakrishnan A, Gaware GJ, Chinthala M (2023) Heterojunction photocatalysts for the removal of nitrophenol: a systematic review. Chemosphere 310:136853. https://doi.org/10.1016/J.CHEMOSPHERE.2022.136853

    Article  CAS  PubMed  Google Scholar 

  13. Xiong Z, Zhang H, Zhang W et al (2019) Removal of nitrophenols and their derivatives by chemical redox: a review. Chem Eng J 359:13–31. https://doi.org/10.1016/J.CEJ.2018.11.111

    Article  CAS  Google Scholar 

  14. Raza W, Lee J, Raza N et al (2019) Removal of phenolic compounds from industrial waste water based on membrane-based technologies. J Ind Eng Chem 71:1–18. https://doi.org/10.1016/J.JIEC.2018.11.024

    Article  Google Scholar 

  15. Bilal M, Bagheri AR, Bhatt P, Chen S (2021) Environmental occurrence, toxicity concerns, and remediation of recalcitrant nitroaromatic compounds. J Environ Manag 291:1685. https://doi.org/10.1016/J.JENVMAN.2021.112685

    Article  Google Scholar 

  16. Djaballah AM, Bagtache R, Tartaya S, Trari M (2021) Synthesis and characterization of the semiconductor CuBi2O4 for optical and dielectric studies. Application to methyl violet degradation under visible light. React Kinet Mech Catal 134:1055–1067. https://doi.org/10.1007/S11144-021-02115-4/FIGURES/12

    Article  CAS  Google Scholar 

  17. Bagtache R, Brahimi R, Abdmeziem K, Trari M (2021) Preparation and photo-electrochemical characterization of KAlPO4F: application to photodegradation of methyl violet under sunlight. React Kinet Mech Catal 133:1111–1120. https://doi.org/10.1007/S11144-021-02010-Y/FIGURES/8

    Article  CAS  Google Scholar 

  18. Djaballah AM, Bagtache R, Benlambarek M, Trari M (2022) Semiconducting properties of CuBi2O4 prepared at low temperature: application to oxygen evolution under visible light. React Kinet Mech Catal 135:2769–2781. https://doi.org/10.1007/S11144-022-02260-4/FIGURES/10

    Article  CAS  Google Scholar 

  19. El Mrabet I, Ihssane B, Valdés H, Zaitan H (2022) Optimization of Fenton process operating conditions for the treatment of the landfill leachate of Fez city (Morocco). Int J Environ Sci Technol 19:3323–3336. https://doi.org/10.1007/s13762-021-03393-0

    Article  CAS  Google Scholar 

  20. Majdoub A, El Mrabet I, Majdoub M et al (2022) In situ deposition of Ag nanoparticles onto PE/rGO hybrids for the dip-catalytic hydrogenation of 4-nitrophenol into 4-aminophenol. Int J Environ Anal Chem. https://doi.org/10.1080/03067319.2022.2089034

    Article  Google Scholar 

  21. El Hajam M, Kandri NI, Zerouale A et al (2022) Lignocellulosic nanocrystals from sawmill waste as biotemplates for free-surfactant synthesis of photocatalytically active porous silica. ACS Appl Mater Interfaces 14:19547–19560. https://doi.org/10.1021/acsami.2c02550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zouheir M, Assila O, Tanji K et al (2021) Bandgap optimization of sol-gel-derived TiO2 and its effect on the photodegradation of formic acid. Nano Futur 5:025004

    Article  CAS  Google Scholar 

  23. Fahoul Y, Zouheir M, Tanji K, Kherbeche A (2022) Synthesis of a novel ZnAl2O4/CuS nanocomposite and its characterization for photocatalytic degradation of acid red 1 under UV illumination. J Alloys Compd 889:161708. https://doi.org/10.1016/j.jallcom.2021.161708

    Article  CAS  Google Scholar 

  24. Mahtab MS, Farooqi IH, Khursheed A (2022) Zero Fenton sludge discharge: a review on reuse approach during wastewater treatment by the advanced oxidation process. Int J Environ Sci Technol 19:2265–2278. https://doi.org/10.1007/S13762-020-03121-0/FIGURES/1

    Article  CAS  Google Scholar 

  25. Belghiti M, Tanji K, El Mersly L et al (2022) Fast and non-selective photodegradation of basic yellow 28, malachite green, tetracycline, and sulfamethazine using a nanosized ZnO synthesized from zinc ore. React Kinet Mech Catal 135:2265–2278. https://doi.org/10.1007/s11144-022-02232-8

    Article  CAS  Google Scholar 

  26. Tanji K, Navio JA, Martín-Gómez AN et al (2020) Role of Fe(III) in aqueous solution or deposited on ZnO surface in the photoassisted degradation of rhodamine B and caffeine. Chemosphere 241:125009. https://doi.org/10.1016/j.chemosphere.2019.125009

    Article  CAS  PubMed  Google Scholar 

  27. Tanji K, Zouheir M, Hachhach M et al (2021) Design and simulation of a photocatalysis reactor for rhodamine B degradation using cobalt-doped ZnO film. React Kinet Mech Catal 134:1017–1038. https://doi.org/10.1007/s11144-021-02116-3

    Article  CAS  Google Scholar 

  28. Qi K, Yu J (2020) Modification of ZnO-based photocatalysts for enhanced photocatalytic activity. Interface Sci Technol 31:265–284. https://doi.org/10.1016/B978-0-08-102890-2.00008-7

    Article  CAS  Google Scholar 

  29. Samadi M, Zirak M, Naseri A et al (2016) Recent progress on doped ZnO nanostructures for visible-light photocatalysis. Thin Solid Films 605:2–19. https://doi.org/10.1016/j.tsf.2015.12.064

    Article  CAS  Google Scholar 

  30. Hamdy MS, Chandekar KV, Shkir M et al (2020) Novel Mg@ZnO nanoparticles synthesized by facile one-step combustion route for anti-microbial, cytotoxicity and photocatalysis applications. J Nanostructure Chem 11:147–163. https://doi.org/10.1007/s40097-020-00355-9

    Article  CAS  Google Scholar 

  31. Zyoud AH, Zubi A, Zyoud SH et al (2019) Kaolin-supported ZnO nanoparticle catalysts in self-sensitized tetracycline photodegradation: zero-point charge and pH effects. Appl Clay Sci 182:1094. https://doi.org/10.1016/J.CLAY.2019.105294

    Article  Google Scholar 

  32. Heo YW, Ivill MP, Ip K et al (2008) ZnO: growth, doping & processing. Mater Today 7:34–40. https://doi.org/10.1016/S1369-7021(04)00287-1

    Article  Google Scholar 

  33. Patil KC, Aruna ST, Mimani T (2002) Combustion synthesis: an update. Curr Opin Solid State Mater Sci 6:507–512. https://doi.org/10.1016/S1359-0286(02)00123-7

    Article  CAS  Google Scholar 

  34. Moore JJ, Feng HJ (1995) Combustion synthesis of advanced materials: part I. Reaction parameters. Prog Mater Sci 39:243–273. https://doi.org/10.1016/0079-6425(94)00011-5

    Article  CAS  Google Scholar 

  35. Blaha P, Schwarz K, Madsen GKH, et al (2022) WIEN2K, an augmented plane wave plus local orbitals program for calculating crystal properties

  36. Morgan WS, Jorgensen JJ, Hess BC, Hart GLW (2018) Efficiency of generalized regular k-point grids. Comput Mater Sci 153:424–430. https://doi.org/10.1016/j.commatsci.2018.06.031

    Article  CAS  Google Scholar 

  37. Achouri F, Corbel S, Aboulaich A et al (2014) Aqueous synthesis and enhanced photocatalytic activity of ZnO/Fe2O3 heterostructures. J Phys Chem Solids 75:1081–1087. https://doi.org/10.1016/J.JPCS.2014.05.013

    Article  CAS  Google Scholar 

  38. Moussa H, Girot E, Mozet K et al (2016) ZnO rods/reduced graphene oxide composites prepared via a solvothermal reaction for efficient sunlight-driven photocatalysis. Appl Catal B Environ 185:11–21. https://doi.org/10.1016/J.APCATB.2015.12.007

    Article  CAS  Google Scholar 

  39. Sing KSW, Everett DH, Haul RAW et al (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57:603–619. https://doi.org/10.1351/pac198557040603

    Article  CAS  Google Scholar 

  40. Etacheri V, Roshan R, Kumar V (2012) Mg-doped ZnO nanoparticles for efficient sunlight-driven photocatalysis. ACS Appl Mater Interfaces 4:2717–2725. https://doi.org/10.1021/AM300359H/SUPPL_FILE/AM300359H_SI_001.PDF

    Article  CAS  PubMed  Google Scholar 

  41. Zheng ALT, Abdullah CAC, Chung ELT, Andou Y (2022) Recent progress in visible light-doped ZnO photocatalyst for pollution control. Int J Environ Sci Technol. https://doi.org/10.1007/s13762-022-04354-x

    Article  Google Scholar 

  42. Cen S, Lv X, Jiang Y et al (2020) Synthesis and structure of iron–copper/hollow magnetic/metal–organic framework/coordination sites in a heterogeneous catalyst for a Fenton-based reaction. Catal Sci Technol 10:6687–6693. https://doi.org/10.1039/D0CY01027H

    Article  CAS  Google Scholar 

  43. Divband B, Jodaei A, Khatamian M (2019) Enhancement of photocatalytic degradation of 4-nitrophenol by integrating Ag nanoparticles with ZnO/HZSM-5 nanocomposite. Iran J Catal 9:63–70

    CAS  Google Scholar 

  44. Soussi A, Ait Hssi A, Boulkaddat L et al (2022) Structural, optical and electronic properties of La-doped ZnO thin films: experimental study and DFT calculations. Phys B Condens Matter 643:4181. https://doi.org/10.1016/J.PHYSB.2022.414181

    Article  Google Scholar 

  45. Divband B, Khatamian M, Eslamian GRK, Darbandi M (2013) Synthesis of Ag/ZnO nanostructures by different methods and investigation of their photocatalytic efficiency for 4-nitrophenol degradation. Appl Surf Sci 284:80–86. https://doi.org/10.1016/J.APSUSC.2013.07.015

    Article  CAS  Google Scholar 

  46. Noroozi Z, Ali Rasekh H, Jaafar Soltanianfard M (2019) Preparation and characterization of ZrO2-Cr2O3 nanocomposite as a p-n heterojunction by a facile sol-gel method: a kinetic investigation on the removal of p-nitrophenol dye from aqueous media. Polyhedron 168:11–20. https://doi.org/10.1016/J.POLY.2019.04.033

    Article  CAS  Google Scholar 

  47. Zhang Y, Guo Y, Zhang G, Gao Y (2011) Stable TiO2/rectorite: preparation, characterization and photocatalytic activity. Appl Clay Sci 51:335–340. https://doi.org/10.1016/J.CLAY.2010.12.023

    Article  CAS  Google Scholar 

  48. Zhang Y, Wang D, Zhang G (2011) Photocatalytic degradation of organic contaminants by TiO2/sepiolite composites prepared at low temperature. Chem Eng J 173:1–10. https://doi.org/10.1016/J.CEJ.2010.11.028

    Article  CAS  Google Scholar 

  49. Khatamian M, Khandar AA, Divband B et al (2012) Heterogeneous photocatalytic degradation of 4-nitrophenol in aqueous suspension by Ln (La3+, Nd3+ or Sm3+) doped ZnO nanoparticles. J Mol Catal A Chem 365:120–127. https://doi.org/10.1016/J.MOLCATA.2012.08.018

    Article  CAS  Google Scholar 

  50. Liu X, Zhao L, Lai H et al (2017) Efficient photocatalytic degradation of 4-nitrophenol over graphene modified TiO2. J Chem Technol Biotechnol 92:2417–2424. https://doi.org/10.1002/JCTB.5251

    Article  CAS  Google Scholar 

  51. Devi LG, Anitha BG (2018) Exploration of vectorial charge transfer mechanism in TiO2/SrTiO3 composite under UV light illumination for the degradation of 4-nitrophenol: a comparative study with TiO2 and SrTiO3. Surf Interfaces 11:48–56. https://doi.org/10.1016/J.SURFIN.2018.02.005

    Article  CAS  Google Scholar 

  52. Yadav V, Verma P, Sharma H et al (2020) Photodegradation of 4-nitrophenol over B-doped TiO2 nanostructure: effect of dopant concentration, kinetics, and mechanism. Environ Sci Pollut Res 27:10966–10980. https://doi.org/10.1007/S11356-019-06674-X

    Article  CAS  Google Scholar 

  53. Ilyas H, Qazi IA, Asgar W et al (2011) Photocatalytic degradation of nitro and chlorophenols using doped and undoped titanium dioxide nanoparticles. J Nanomater. https://doi.org/10.1155/2011/589185

    Article  Google Scholar 

  54. Li SX, Zheng FY, Liu XL et al (2005) Photocatalytic degradation of p-nitrophenol on nanometer size titanium dioxide surface modified with 5-sulfosalicylic acid. Chemosphere 61:589–594. https://doi.org/10.1016/J.CHEMOSPHERE.2005.02.054

    Article  CAS  PubMed  Google Scholar 

  55. Zhang Y, Gan H, Zhang G (2011) A novel mixed-phase TiO2/kaolinite composites and their photocatalytic activity for degradation of organic contaminants. Chem Eng J 172:936–943. https://doi.org/10.1016/J.CEJ.2011.07.005

    Article  CAS  Google Scholar 

  56. Zheng P, Du Y, Chang PR, Ma X (2015) Amylose–halloysite–TiO2 composites: Preparation, characterization and photodegradation. Appl Surf Sci 329:256–261. https://doi.org/10.1016/J.APSUSC.2014.12.158

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Authors thank the innovation center at university Sidi Mohamed Ben Abdellah and the CNRST center for performing the characterization part.

Funding

This research has not received any specific grant from any funding agency in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

KT: Conceptualization, Methodology, Writing—original draft. IEM: Visualization, Writing—review & editing. YF: Visualization, Writing—review & editing. AS: Writing—review & editing. MB: Writing—review & editing. IJ: Writing—review & editing. YN: Writing—review & editing. AEG: Writing—review & editing. AK: Resources, Supervision.

Corresponding author

Correspondence to Karim Tanji.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6594 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanji, K., El Mrabet, I., Fahoul, Y. et al. Experimental and theoretical investigation of enhancing the photocatalytic activity of Mg doped ZnO for nitrophenol degradation. Reac Kinet Mech Cat 136, 1125–1142 (2023). https://doi.org/10.1007/s11144-023-02385-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-023-02385-0

Keywords

Navigation