Skip to main content
Log in

Physical–chemical analysis and kinetics of the magnetic biocatalyst for 2,3,6,-trimethylphenol oxidation

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

In the paper, the synthesis of the magnetic biocatalyst based on immobilized peroxidase is described. This catalyst was tested in the reaction of 2,3,6,-trimethylphenol oxidation with the help of hydrogen peroxide to 2,3,5-trimethylhydrochinone (vitamin E intermediate). In the work, the method for magnetic nanoparticle synthesis was chosen. To characterize the synthesized biocatalyst physical–chemical analysis was carried out: transmission electron microscopy, FTIR spectroscopy, the study of magnetic characteristics with vibration magnetometer, X-ray photoelectron spectroscopy, low-temperature nitrogen adsorption. The optimum conditions for the process of 2,3,6,-trimethylphenol oxidation in the presence of magnetic biocatalyst (the substrate initial concentration, temperature, pH).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Soh N, Kaneko S, Uozumi K, Ueda T, Kamada K (2014) J Mater Sci 49:8010–8015

    Article  CAS  Google Scholar 

  2. Bilal M, Rasheed T, Zhao Y, Iqbal HMN, Cui J (2018) “Smart” chemistry and its application in peroxidase immobilization using different support materials. Int J Bio Macromol. https://doi.org/10.1016/j.ijbiomac.2018.07.134

    Article  Google Scholar 

  3. Bi S, Cui Y, Dong Y, Zhang N (2014) Biosens Bioelectron 53:207–213

    Article  CAS  Google Scholar 

  4. Garcia J, Zhang Y, Taylor H, Cespedes O, Webb ME (2011) Nanoscale 3(9):3721–3730

    Article  CAS  Google Scholar 

  5. Yang H, Gong C, Miao L, Xu F (2017) Int J Electrochem Sci 12:4958–4969

    Article  CAS  Google Scholar 

  6. Golami-Borujeni F, Faramarzi MA, Nejatzadeh-Barandozi F, Mahvi AH (2013) Fresenius Environ Bull 22:739–744

    Google Scholar 

  7. Grosu EF, Carja G, Froidevaux R (2018) Chem Intermed 44:773

    Article  Google Scholar 

  8. Vineh MB, Saboury AA, PoostchiA A, Rashid AM, Parivar K (2017) Stability and activity improvement of horseradish peroxidase by covalent immobilization on functionalized reduced graphene oxide and biodegradation of high phenol concentration. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2017.08.133

    Article  Google Scholar 

  9. Ai J, Zhang W, Liao G, Xia H, Wang D (2017) NH2-Fe3O4@SiO2 supported peroxidase catalyzed H2O2 for degradation of endocrine disrupter from aqueous solution: roles of active radicals and NOMs. Chemosphere. https://doi.org/10.1016/j.chemosphere.2017.08.039

    Article  PubMed  Google Scholar 

  10. Bilal M, Iqba H, Rasheed T, Hu H (2017) Int J Biol Macromol 105:328–335

    Article  CAS  Google Scholar 

  11. Li ZL, Cheng L, Zhang LW, Liu W, Ma WQ (2017) Preparation of a Novel Multi-walled-carbon-nanotube/cordierite composite support and its immobilization effect on horseradish peroxidase. Process Saf Environ Prot. https://doi.org/10.1016/j.psep.2017.02.021

    Article  Google Scholar 

  12. Zheng Y, Zhaob S, Liu Y-M (2011) Analyst 136:2890–2892

    Article  CAS  Google Scholar 

  13. Zhou Y, Zhou T, Zhou R, Hu Y (2014) Luminescence 29:338–343

    Article  CAS  Google Scholar 

  14. Barbosa EF, Molina FJ, Lopes FM, Garcıa-Ruız PA, Caramori SS et al (2012) Immobilization of peroxidase onto magnetite modified polyaniline. ScientificWorld J. https://doi.org/10.1100/2012/716374

    Article  Google Scholar 

  15. Song J, Shen H, Yang Y, Zhou Z, Su P et al (2018) Multifunctional magnetic particles for effective suppression of non-specific adsorption and coimmobilization of multiple enzymes by DNA directed immobilization. Mater Chem B. https://doi.org/10.1039/C8TB01842A

    Article  Google Scholar 

  16. Samoilova N, Tikhonov V, Krayukhina M, Yamskov I (2014) J Appl Polym Sci 131:39663–39663

    Article  Google Scholar 

  17. Bayramoglu G, Arica MY (2008) J Hazard Mater 156:148–155

    Article  CAS  Google Scholar 

  18. Corgie SC, Kahawong P, Duan X (2012) Adv Funct Mater 22:1940–1951

    Article  CAS  Google Scholar 

  19. Deepthi SS, Prasad E, Reddy BV (2014) Green Sustain Chem 4:15–19

    Article  Google Scholar 

  20. Li Y, Liu W, Wu M, Yi Z, Zhang J (2007) J Mol Catal A 261:73–78

    Article  CAS  Google Scholar 

  21. Palacio M, Villabrille PI, Romanelli GP (2012) Appl Catal A 417–418:273–280

    Article  Google Scholar 

  22. Türk H (2008) Appl Catal A 340:52–58

    Article  Google Scholar 

  23. Saux C, Pizzio LR, Pierella LB (2013) Appl Catal A 452:17–23

    Article  CAS  Google Scholar 

  24. Koreniuk A (2016) Microporous Mesoporous Mater 229:98–105

    Article  CAS  Google Scholar 

  25. Wang G, Wanga Y, Yaoa J, Li H (2019) Mol Catal 472:10–16

    Article  CAS  Google Scholar 

  26. Laurent S, Forge D, Port M (2008) Chem Rev 108:2064–2110

    Article  CAS  Google Scholar 

  27. Jadhav SA, Bongiovanni R (2012) Adv Mat Lett 3:356–361

    Article  Google Scholar 

  28. Cheng C, Xuw F, Gu H (2011) NewJ Chem 35:1072–1079

    Article  CAS  Google Scholar 

  29. Baranov DA, Gubin SP (2009) Nanosystems 1:129–147

    Google Scholar 

  30. Ma M, Zhang Y, Yu W, Shen H, Zhang H et al (2003) Coll Surf A 212:219–226

    Article  CAS  Google Scholar 

  31. Silverstein RM, Webster FX, Kiemle DJ, Bryce DL (2011) Spectrometric identification of organic compounds. Wiley, Hoboken

    Google Scholar 

  32. NIST X-ray Photoelectron Spectroscopy Database Version 3.5 (2003) National Institute of Standards and Technology, Gaithersburg. https://srdata.nist.gov/xps/

  33. Zhang S, Wu W, Xiao X, Zhou J, Ren F, Jiang C (2011) Nanoscale Res Lett 6:89

    Article  CAS  Google Scholar 

  34. Malomo SO, Adeoye RI, Babatunde L, Saheed IA, Iniaghe MO et al (2011) Biokemistri 23:124–128

    Google Scholar 

  35. Schmid R, Sapunov VN (1982) Non formal kinetics. In search for chemical reaction pathways. Stanford University, Stanford

    Google Scholar 

  36. Yu F, Huang Y, Cole AJ, Yang C (2009) Biomaterials 30:4716–4722

    Article  CAS  Google Scholar 

  37. Kholdeeva OA, Ivanchikova ID, Guidotti M, Ravasio N (2007) Green Chem 9:731–733

    Article  CAS  Google Scholar 

  38. Rogozhin VV (2004) Peroxidase as a component of the antioxidant system of living organisms. GIORD, St. Petersburg

    Google Scholar 

  39. Henriksen A, Smith AT, Gajhede M (1999) J Biol Chem 274:35005–35011

    Article  CAS  Google Scholar 

  40. Dawson J (1988) Science 240:433–439

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support was provided by the Russian Science Foundation (Grant No. 19-79-00134).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Grebennikova.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1735 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grebennikova, O., Sulman, A., Matveeva, V. et al. Physical–chemical analysis and kinetics of the magnetic biocatalyst for 2,3,6,-trimethylphenol oxidation. Reac Kinet Mech Cat 130, 317–329 (2020). https://doi.org/10.1007/s11144-020-01762-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-020-01762-3

Keywords

Navigation