Skip to main content
Log in

Waste mussel shell as a highly efficient heterogeneous catalyst for the synthesis of polyfunctionalized 4H-pyrans in aqueous media

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

An economical and environmentally friendly heterogeneous base catalyst has been developed from a waste freshwater mussel shell and employed successfully for the synthesis of 4H-pyrans in an aqueous medium at ambient temperature. 2-arylidenemalononitrile, an intermediate of 4H-pyran reaction, was also prepared using the same catalyst. The catalyst was characterized by FT-IR, XRD, XRF, EDS, and SEM. Analytical tools such as XRF and EDS explored the presence of calcium oxide as a main component in the mussel shell, while the XRD pattern showed crystalline nature and SEM image displayed porous surface with irregular cavities. The catalyst exhibited unprecedented performance in the one-pot three-component condensation reaction of C–H activated acidic compounds with aromatic aldehydes and malononitrile in the green reaction medium and offered pure products without chromatographic separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1.
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6.
Fig. 7
Scheme 2.

Similar content being viewed by others

References

  1. Flavin MT, Rizzo JD, Khilevich A, Kucherenko A, Sheinkmn AK, Vilaychack V, Lin L, Chen W, Greenwood EM, Pengsuparp T, Pezzuto JM, Hughes SH, Flavin TM, Cibulski M, Boulanger WA, Shone RL, Xu ZQ (1996) Synthesis, chromatographic resolution, and anti-human immunodeficiency virus activity of (+/-)-calanolide A and its enantiomers. J Med Chem 39:1303–1313

    Article  CAS  Google Scholar 

  2. Kontogiorgis CA, Hadjipavlou-Litina DJ (2005) Synthesis and anti-inflammatory activity of coumarin derivatives. J Med Chem 48:6400–6408

    Article  CAS  Google Scholar 

  3. Khafagy MM, Abd el-Wahab AH, Eid FA, El-Agrody AM (2002) Synthesis of halogen derivatives of benzo[h]chromene and benzo[a]anthracene with promising antimicrobial activities. Farmaco 57:715–722

    Article  CAS  Google Scholar 

  4. Raj T, Bhatia RK, Kapur A, Sharma M, Saxena AK, Ishar MPS (2010) Cytotoxic activity of 3-(5-phenyl-3H-[1,2,4]dithiazol-3-yl)chromen-4-ones and 4-oxo-4H-chromene-3-carbothionic acid N-phenylamides. Eur J Med Chem 45:790–794

    Article  CAS  Google Scholar 

  5. Afantitis A, Melagraki G, Sarimveis H, Koutentis PA, Markopoulos J, Igglessi-Markopoulou O (2006) A novel QSAR model for predicting induction of apoptosis by 4-aryl-4H-chromenes. Bioorg Med Chem 14:6686–6694

    Article  CAS  Google Scholar 

  6. Conti C, Monaco LP, Desideri N (2011) Design, synthesis and in vitro evaluation of novel chroman-4-one, chroman, and 2H-chromene derivatives as human rhinovirus capsid-binding inhibitors. Bioorg Med Chem 19:7357–7364

    Article  CAS  Google Scholar 

  7. Kemnitzer W, Drewe J, Jiang S, Zhang H, Crogan-Grundy C, Labreque D, Bubenick M, Attardo G, Denis R, Lamothe S, Gourdeau H, Tseng B, Kasibhatla S, Cai SX (2008) Discovery of 4-aryl-4H-chromenes as a new series of apoptosis inducers using a cell-and caspase-based high throughput screening assy. 4. Structure-acticity relationships of N-alkyl substituted pyrrole fused at the 7,8-positions. J Med Chem 51:417–423

    Article  CAS  Google Scholar 

  8. Atwal KS (1996) Myocardial protection with the ATP-sensitive potassium channel openers. Curr Med Chem 3:227–238

    CAS  Google Scholar 

  9. Pirotte B, Fontaine J, Lebrun P ((2019) ) Kinetics studies on a multicomponent Knoevenagel-Michael domino reaction by an automated flow reactor. Curr Med Chem 2:573–582–582

    CAS  Google Scholar 

  10. Empfield JR, Russell K (1996). In: Bristol JA (ed) Annual reports in medicinal chemistry, 3rd edn. Academic press, New York

  11. Jin TS, Wang AQ, Wang X, Zhang JS, Li TS (2004) A clean one-pot synthesis of tetrahydrobenzo[b]pyran derivatives catalyzed by hexadecyltrimethyl ammonium bromide in aqueous media. Synlett 5:871–873

    Article  Google Scholar 

  12. Sharma P, Gupta M, Kant R, Gupta VK (2016) One-pot synthesis of various 2-amino-4H-chromene derivatives using a highly active supported ionic liquid catalyst. RSC Adv 6:32052–32059

    Article  CAS  Google Scholar 

  13. Devi I, Bhuyan PJ (2004) Sodium bromide catalyzed one-pot synthesis of tetrahydrobenzo[b]pyrans via a three-component cyclocondensation under microwave irradiation and solvent free conditions. Tetrahedron Lett 45:8625–8627

    Article  CAS  Google Scholar 

  14. Balalaie S, Bararjanian M, Amani AM, Movassagh B (2006) (S)-Proline as a neutral and efficient catalyst for the one-pot synthesis of tetrahydrobenzo[b]pyran derivatives in aqueous media. Synlett 2:263–266

    Article  Google Scholar 

  15. Tu SJ, Gao Y, Guo C, Shi D, Lu Z (2002) A convenient synthesis of 2-amino-5,6,7,8-tetrahydro-5-oxo-4-aryl-7,7-dimethyl-4H-benzo[b]pyran-3-carbonitrile under microwave irradiation. Synth Commun 32:2137–2141

    Article  CAS  Google Scholar 

  16. Li JT, Xu WZ, Yang LC, Li TS (2004) One-pot synthesis of 2-amino-4-aryl-3-carbalkoxy-7,7-dimethyl-5,6,7,8-tetrahydrobenzo[b]pyran derivatives catalyzed by KF/basic Al2O3 under ultrasound irradiation. Synth Commun 34:4565–4571

    Article  CAS  Google Scholar 

  17. Penjg Y, Song G (2007) Amino-functionalized ionic liquid as catalytically active solvent for microwave-assisted synthesis of 4H-pyran. Catal Commun 8:111–114

    Article  Google Scholar 

  18. Dhakara A, Goyal R, Rajput A, Kaurava MS, Tomar VS, Agarwal DD (2019) Multicomponent synthesis of 4H-pyran derivatives using KOH loaded calcium oxide as a catalyst in solvent free condition. Curr Chem Lett 8:125–136

    Article  Google Scholar 

  19. Rao NVS (1989). In: Jairajpuri MS (ed) Handbook freshwater molluscs of India. Radiant Pro Pvt Ltd., Calcutta

  20. Mahidin GA, Muslim A, Husin H, Hani MR, Syukur M, Hamdani K, Rizal S (2016) Sulfur removal in bio-briquette combustion using seashell waste adsorbent at low temperature. J Eng Technol Sci 48:465–481

    Article  CAS  Google Scholar 

  21. Tudor HEA, Gryte CC, Harris CC (2006) Seashells: detoxifying agents for metal contaminated water. Water Air Soil Poll 173:209–242

    Article  CAS  Google Scholar 

  22. Hu S, Wang Y, Han H (2011) Utilization of waste freshwater mussel shell as an economic catalyst for biodiesel production. Biomass Bioenerg 35:3627–3635

    Article  CAS  Google Scholar 

  23. Bennett JA, Wilson K, Lee AF (2016) Catalytic applications of waste derived materials. J Mater Chem A 4:3617–3637

    Article  CAS  Google Scholar 

  24. Vyskočilová E, Gruberová A, Shamzhy M, Vrbková E, Krupka J, Červený L (2018) Prins cyclization in 4-methyl-2-phenyl-tetrahydro-2H-pyran-4-ol preparation using smectite clay as catalyst. Reac Kinet Mech Cat 124:711–725

    Article  Google Scholar 

  25. Patil S, Jadhav SD, Patil UP (2012) Natural acid catalyzed synthesis of Schiff base under solvent-free condition: as a green approach. Arch Appl Sci Res 4:1074–1078

    CAS  Google Scholar 

  26. Morbale ST, Jadhav SD, Deshmukh MB, Patil SS (2015) Bronsted acid-type biosurfactant for heterocyclization: a green protocol for benzopyran synthesis. RSC Adv 5:84610–84620

    Article  CAS  Google Scholar 

  27. Patil UP, Patil RC, Patil SS (2019) An eco-friendly catalytic system for one-pot multicomponent synthesis of diverse and densely functionalized pyranopyrazole and benzochromene derivatives. J Heterocycl Chem 56:1898–1913

    Article  CAS  Google Scholar 

  28. Mobinikhaledi A, Moghanian H, Zohari A (2016) Piperazine catalyzed one-pot, three-component synthesis of 4H-chromene and 3,4-dihydropyrano[c]chromene derivatives under solvent-free conditions. Rev Roum Chim 61:35–39

    Google Scholar 

  29. Mekheimer RA, Abdelhameed AM, Mohamed SM, Sadek KU (2010) Green, three-component highly efficient synthesis of 2-amino-5,6,7,8-tetrahydro-4H-chromen-3-carbonitriles in water at ambient temperature. Green Chem Lett Rev 3:161–163

    Article  CAS  Google Scholar 

  30. Mohebat R, Yazdani-Elah-Abadi A, Simin N (2016) An efficient eco-friendly synthesis of pyran annulated heterocyclic systems under conventional heating and microwave irradiation in solvent-free conditions. Polycycl Aromat Comp 38:180–188

    Article  Google Scholar 

  31. Baghbanian SM, Rezaei N, Tashakkorian H (2013) Nanozeolite clinoptilolite as a highly efficient heterogeneous catalyst for the synthesis of various 2-amino-4H-chromene derivatives in aqueous media. Green Chem 15:3446–3458

    Article  CAS  Google Scholar 

  32. Maghsoodlou MT, Masoumnia A, Mousavi MR, Hazeri N, Aboonajmi J, Habibi-Khorasani SM, Kiaee S (2015) A green protocol for synthesis of pyran annulated heterocyclic systems using Na2SO4 as an efficient catalyst. Iran J Catal 5:169–174

    CAS  Google Scholar 

  33. Kumar A, Rao MS (2012) An expeditious and greener one-pot synthesis of 4H-chromenes catalyzed by Ba(OTf)2 in PEG-water. Green Chem Lett Rev 5:283–290

    Article  CAS  Google Scholar 

  34. Zonouz AM, Eskandari I, Moghani D (2012) Acceleration of multicomponent reactions in aqueous medium: multicomponent synthesis of a 4H-pyran library. Chem Sci Trans 1:91–102

    Article  CAS  Google Scholar 

  35. Calvino-Casilda V, Martin-Aranda RM, Lopez-Peinado AJ, Sobczak I, Ziolek M (2009) Catalytic properties of alkali metal-modified oxide supports for the Knoevenagel condensation: kinetic aspects. Catal Today 142:278–282

    Article  CAS  Google Scholar 

  36. Khare R, Pandey J, Smriti RR (2019) The importance and applications of Knoevenagel reaction. Orient J Chem 35:423–429

    Article  Google Scholar 

  37. Haas CP, Tallarek U (2019) Kinetics studies on a multicomponent Knoevenagel-Michael domino reaction by an automated flow reactor. Chem Open 8:606–614

    CAS  Google Scholar 

  38. Hruby SL, Shanks BH (2009) Acid–base cooperativity in condensation reactions with functionalized mesoporous silica catalysts. J Catal 263:181–188

    Article  CAS  Google Scholar 

  39. Xu D, Shi S, Wang Y (2013) Polystyrene-immobilized DABCO as a highly efficient and recyclable organocatalyst for the Knoevenagel condensation reaction. RSC Adv 3:23075–23079

    Article  CAS  Google Scholar 

  40. Zhang Q, Gao Y-H, Qin S-L, Wei H-X (2017) Facile one-pot synthesis of amidoalkyl naphthols and benzopyrans using magnetic nanoparticle supported acidic ionic liquid as a highly efficient and reusable catalyst. Catalysts 7:351

    Article  Google Scholar 

  41. Azath IA, Puthiaraj P, Pitchumani K (2013) One-Pot multicomponent solvent-free synthesis of 2-amio-4h-benzo[b]pyrans catalyzed by per-6-amino-βcyclodextrin. ACS Sustain Chem Eng 1:174–179

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. P. Patil.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 7743 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patil, U.P., Patil, R.C. & Patil, S.S. Waste mussel shell as a highly efficient heterogeneous catalyst for the synthesis of polyfunctionalized 4H-pyrans in aqueous media. Reac Kinet Mech Cat 129, 679–691 (2020). https://doi.org/10.1007/s11144-020-01743-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-020-01743-6

Keywords

Navigation