Skip to main content
Log in

Development of a modified kinetic model for residual oil hydroprocessing

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

A basic conversion model for hydrodesulfurization (HDS) is developed according to corresponding reaction process. Further improvement is conducted on the model considering the HDS characteristics and industrial demand. The model can quantitatively describe the effect of operational conditions, deactivation behavior and residual properties on HDS. By comparison with the experimental data, the calculated conversions are all found to have a total average relative deviation of less than 5%, presenting a good fit in relation to the experimental data. Moreover, the model can also accurately predict the performance of hydrodecarbonresidue and hydrodemetallization. Results indicate that the model has a high universality and practicability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

\(C_S\) :

Contention of representative S compound (wt%)

\(C_{{S_{0} }}\) :

Initial contention of representative S compound (wt%)

\(Cz\) :

The contents of Catalyst surface active sites (mol/m2)

\(C_{M}\) :

Adsorbent concentration (mol/m2)

\(C_{{M_{0} }}\) :

Initial contention of representative metal compound (mg/kg)

\(C_{{C_{0} }}\) :

Initial contention of representative carbon residue compound (wt%)

\(C_{H}\) :

The contents of hydrogen atom (mol/m2)

\(C_{L}\) :

Bituminous concentration (wt%)

\(R\) :

Gas constant (8.314 J mol−1 K−1)

\(E_{1}\) :

Activation energy of first step reaction (kJ/mol)

\(E_{2}\) :

Activation energy of second step reaction (kJ/mol)

\(C_{{H_{2} }}\) :

Hydrogen gas concentration (mol/m3)

\(C_{{H_{20} }}\) :

Initial hydrogen gas concentration (mol/m3)

\(\alpha_{1}\) and \(\alpha_{2}\) :

Average weights

\(\tau\) :

Reaction time (h)

\(T\) :

Reaction temperature (°C)

\(E_{a}\) :

Relative apparent activation energy

\(E_{a}^{'}\) :

Apparent activation energy (kJ/mol)

\(\pi_{c}\) :

Active retention factor

\(k_{d}\) :

Deactivation rate constant of covering

\(t\) :

Running time (h or day)

\(n_{0}\) :

The parameter of deactivation curve shape

\(\omega\) :

The parameter of initial hydrogen concentration

\(m_{0}\) :

The index of reaction time

\(m_{1}\) :

The index of reaction time

\(k_{0}^{{}}\) :

Pre-exponential factors (related)

\(k_{0}^{'}\) :

The pre-exponential factor when t = 0

\(\eta\) :

Internal diffusion efficient factor

\(k_{{}}^{'}\) :

Rate coefficient when \(\eta\) = 1

\(k\) :

Rate coefficient

\(D_{e}^{{}}\) :

Effective diffusion coefficient

\(\eta_{0}\) :

Coefficient

\(N\) :

The parameter of internal diffusion resistance

\(r_{0}\) :

The mesoporous radius of fresh catalyst (nm)

\(k_{d}^{'}\) :

The channel reduction deactivation factor of catalyst

\(n_{0}^{'}\) :

The shape parameter of deactivation curve

\(V_{cat}\) :

Catalyst bed volume (m3)

\(\lambda\) :

Hydrogen oil volume ratio (V/V)

\(F_{oil}\) :

Flow of liquid oil into the reactor (ton/h)

\(C_{20}\) :

Initial concentration of H2

\(P\) :

Operation pressure (MPa)

\(K_{H}\) :

Dissociation adsorption constant of H2

References

  1. Barkat M, Nibou D, Chegrouche S, Mellah A (2009) Chem Eng Process 48(1):38–47

    Article  CAS  Google Scholar 

  2. Boehme TR, Onder CH, Guzzella L (2008) Comput Chem Eng 32(10):2445–2454

    Article  CAS  Google Scholar 

  3. Jaree A, Boonsomlanjit B, Limtrakul J (2008) Comput Chem Eng 32(12):2897–2902

    Article  CAS  Google Scholar 

  4. Alvarezmajmutov A, Gieleciak R, Chen J (2015) Energy Fuels 29(12):7931–7940

    Article  CAS  Google Scholar 

  5. Al-Barood A, Qabazard H, Stanislaus A (2005) Liq Fuels Technol 23(7–8):12

    Google Scholar 

  6. Ferreira C, Tayakout-Fayolle M, Guibard I, Lemos F (2014) Fuel 129(7):267–277

    Article  CAS  Google Scholar 

  7. Vonortas A, Papayannakos N (2014) Ind Eng Chem Res 53(23):9646–9652

    Article  CAS  Google Scholar 

  8. Doukeh R, Bombos M, Trifoi A, Mihai O, Popovici D (2018) C R Chim 21(3–4):277–287

    Article  CAS  Google Scholar 

  9. Tang X, Li S, Yue C, He J, Hou J (2013) Oil Shale 30(4):517–535

    Article  CAS  Google Scholar 

  10. Yang Y, Dai F, Li C, Xiang S, Yaseen M (2017) Energy Fuels 31(5):5491–5497

    Article  CAS  Google Scholar 

  11. Rodríguez MA, Elizalde I, Ancheyta J (2012) Fuel 100(4):152–162

    Article  CAS  Google Scholar 

  12. Lente G (2015) J Math Chem 53(4):1172–1183

    Article  CAS  Google Scholar 

  13. Lente G (2012) J Chem Phys 137(16):164101

    Article  CAS  PubMed  Google Scholar 

  14. Albazzaz H, Marafi AMJ, Ma X, Ansari T (2017) Energy Fuels 31(1):831–838

    Article  CAS  Google Scholar 

  15. Mederos FS, Ancheyta J, Elizalde I (2012) Appl Catal A Gen 425:13–27

    Article  CAS  Google Scholar 

  16. Stanislaus A, Marafi A, Rana MS (2010) Catal Today 153(1):1–68

    Article  CAS  Google Scholar 

  17. Kam EKT, Al-Shamali M, Juraidan M (2005) Energy Fuels 19(3):753–764

    Article  CAS  Google Scholar 

  18. Marafi A, Kam E, Stanislaus A (2008) Fuel 87(10–11):2131–2140

    Article  CAS  Google Scholar 

  19. Alonso F, Ancheyta J (2017) Catal Today 305:203–211

    Article  CAS  Google Scholar 

  20. Nguyen TTH, Teratani S, Tanaka R, Endo A, Hirao M (2017) Energy Fuels 31(5):5673–5681

    Article  CAS  Google Scholar 

  21. Morales-Valencia EM, Castillo-Araiza CO, Giraldo SA, Baldovinomedrano VG (2018) ACS Catal 8:3926–3942

    Article  CAS  Google Scholar 

  22. Niu M, Zheng H, Sun X, Zhang S, Li D (2017) Energy Fuel 31(5):5441–5447

    Article  CAS  Google Scholar 

  23. Li Q, Zhang Y, Chen S, Fang W, Yang Y (2011) Chin J Catal 32(3):446–450

    Article  CAS  Google Scholar 

  24. Elizalde I, Ancheyta J (2014) Catal Today 220:221–227

    Article  CAS  Google Scholar 

  25. Wood J, Gladden LF (2003) Appl Catal A Gen 249(2):241–253

    Article  CAS  Google Scholar 

  26. Ancheyta J, Betancourt G, Centeno G, Marroquín G, Alonso F, Garciafigueroa E (2002) Energy Fuels 16(6):1438–1443

    Article  CAS  Google Scholar 

  27. Wu H, Duan A, Zhao Z, Xu C, Jiang G, Liu J, Wei Y, Li J, Chi K, Guo J (2017) RSC Adv 7(70):44340–44347

    Article  CAS  Google Scholar 

  28. Li C, Chen YW, Yang SJ, Wu JC (1993) Ind Eng Chem Res 32(8):1573–1578

    Article  CAS  Google Scholar 

  29. Kathawalla IA, Anderson JL (1988) Ind Eng Chem Res 27(5):866–871

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (21703179, 21773194 and 21473143) and the Fundamental Research Funds for the Central Universities of China (20720170103).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weikun Lai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 266 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Yang, Z., Yuan, S. et al. Development of a modified kinetic model for residual oil hydroprocessing. Reac Kinet Mech Cat 126, 921–937 (2019). https://doi.org/10.1007/s11144-019-01556-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-019-01556-2

Keywords

Navigation