Skip to main content
Log in

Conversion of ethanol to acetaldehyde over VOX-SiO2 catalysts: the effects of support texture and vanadium speciation

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

SBA-15 and fumed-silica-supported vanadium catalysts prepared by impregnation to contain 1, 5 and 10 wt% of vanadia were characterized by XRF, N2-BET, SEM, H2-TPR, DR UV–vis and Raman spectroscopy to determine the key vanadium species present in these catalysts. These catalysts were then used in the oxidation of ethanol by oxygen at 250 and 300 °C. The comparison of the catalytic performances of individual catalysts with their physico-chemical characteristics led to the conclusion that oligomeric tetrahedrally coordinated vanadium species have the highest potential for the selective oxidation of ethanol reaching high intrinsic catalytic activity and high selectivity to acetaldehyde. They differ significantly from catalysts with a high population of monomeric species, which exhibit low activity, especially at 250 °C, and high selectivity to ethylene as a product of ethanol dehydration. The observed changes in the isothermal dependence of selectivity to ethene on the conversion degree were ascribed to the auto-inhibition effect of water vapor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Angelici C, Weckhuysen BM, Bruijnincx PCA (2013) Chemocatalytic conversion of ethanol into butadiene and other bulk chemicals. ChemSusChem 6(9):1595–1614

    Article  CAS  Google Scholar 

  2. Poulopoulos SG (2016) Catalytic oxidation of ethanol in the gas phase over Pt/Rh and Pd catalysts: kinetic study in a spinning-basket flow reactor. Reac Kinet Mech Cat 117(2):487–501

    Article  CAS  Google Scholar 

  3. Glinski M, Kijenski J (1992) Monolayer Vanadia On Titania Systems From Alkoxide Precursors 2. Activity In Primary Alcohol Oxidation. Reac Kinet Cat Lett 46(2):387–396

    Article  CAS  Google Scholar 

  4. Quaranta NE, Soria J, Corberan VC, Fierro JLG (1997) Selective oxidation of ethanol to acetaldehyde on V2O5/TiO2/SiO2 catalysts - Effect of TiO2-coating of the silica support. J Catal 171(1):1–13

    Article  CAS  Google Scholar 

  5. Lakshmi JL, Ihasz NJ, Miller JM (2001) Synthesis, characterization and ethanol partial oxidation studies of V2O5 catalysts supported on TiO2-SiO2 and TiO2-ZrO2 sol–gel mixed oxides. J Mol Catal A-Chem 165(1–2):199–209

    Article  CAS  Google Scholar 

  6. Rodella CB, Franco RWA, Magon CJ, Donoso JP, Nunes LAO, Saeki MJ, Aegerter MA, Florentino AO (2002) V2O5/TiO2 catalyst xerogels: method of preparation and characterization. J Sol-Gel Sci Technol 25(1):75–82

    Article  CAS  Google Scholar 

  7. Santacesaria E, Sorrentino A, Tesser R, Di Serio M, Ruggiero A (2003) Oxidative dehydrogenation of ethanol to acetaldehyde on V2O5/TiO2-SiO2 catalysts obtained by grafting vanadium and titanium alkoxides on silica. J Mol Catal A Chem 204:617–627

    Article  Google Scholar 

  8. Feng T, Vohs JM (2004) Mechanism of beta-hydrogen abstraction from adsorbed alkoxides on supported metal oxide catalysts. J Phys Chem B 108(18):5647–5652

    Article  CAS  Google Scholar 

  9. Lee JH, Schmieg SJ, Oh SH (2004) Catalytic reforming of ethanol to acetaldehyde for Lean-NOx(x) emission control. Ind Eng Chem Res 43(20):6343–6348

    Article  CAS  Google Scholar 

  10. Lin HM, Kao ST, Lin KM, Chang JR, Shyu SG (2004) Grafting TiO2 on MCM-41 as a TiO2 support for vanadia for catalytic oxidation of ethanol-EXAFS and XANES analyses of vanadium. J Catal 224(1):156–163

    Article  CAS  Google Scholar 

  11. Tesser R, Maradei V, Di Serio M, Santacesaria E (2004) Kinetics of the oxidative dehydrogenation of ethanol to acetaldehyde on V2O5/TiO2-SiO2 catalysts prepared by grafting. Ind Eng Chem Res 43(7):1623–1633

    Article  CAS  Google Scholar 

  12. Kwak JH, Herrera JE, Hu JZ, Wang Y, Peden CHF (2006) A new class of highly dispersed VOx catalysts on mesoporous silica: synthesis, characterization, and catalytic activity in the partial oxidation of ethanol. Appl Catal A Gen 300(2):109–119

    Article  CAS  Google Scholar 

  13. Lin Y-C, Chang C-H, Chen C-C, Jehng J-M, Shyu S-G (2008) Supported vanadium oxide catalysts in selective oxidation of ethanol: Comparison of TiO2/SiO2 and ZrO2/SiO2 as supports. Catal Commun 9(5):675–679

    Article  CAS  Google Scholar 

  14. Jorgensen B, Kristensen SB, Kunov-Kruse AJ, Fehrmann R, Christensen CH, Riisager A (2009) Gas-Phase Oxidation of Aqueous Ethanol by Nanoparticle Vanadia/Anatase Catalysts. Top Catal 52(3):253–257

    Article  CAS  Google Scholar 

  15. Beck B, Harth M, Hamilton NG, Carrero C, Uhlrich JJ, Trunschke A, Shaikhutdinov S, Schubert H, Freund H-J, Schloegl R, Sauer J, Schomaecker R (2012) Partial oxidation of ethanol on vanadia catalysts on supporting oxides with different redox properties compared to propane. J Catal 296:120–131

    Article  CAS  Google Scholar 

  16. Herrera JE, Isimjan TT, Abdullahi I, Ray A, Rohani S (2012) A novel nanoengineered VOx catalyst supported on highly ordered TiO2 nanotube arrays for partial oxidation reactions. Appl Catal A-Gen 417:13–18

    Article  Google Scholar 

  17. Sobolev VI, Danilevich EV, Koltunov KY (2013) Role of vanadium species in the selective oxidation of ethanol on V2O5/TiO2 catalysts. Kinet Catal 54(6):730–734

    Article  CAS  Google Scholar 

  18. Artiglia L, Agnoli S, Savio L, Pal J, Celasco E, Rocca M, Bondino F, Magnano E, Castellarin-Cudia C, Netzer FP, Granozzi G (2014) From Vanadia Nanoclusters to Ultrathin Films on TiO2(110): evolution of the Yield and Selectivity in the Ethanol Oxidation Reaction. ACS Catal 4(10):3715–3723

    Article  CAS  Google Scholar 

  19. Yun D, Zhao Y, Abdullahi I, Herrera JE (2014) The effect of interstitial nitrogen in the activity of the VOx/N-TiO2 catalytic system for ethanol partial oxidation. J Mol Catal A Chem 390:169–177

    Article  CAS  Google Scholar 

  20. Hidalgo JM, Tisler Z, Kubicka D, Raabova K, Bulanek R (2016) (V)/Hydrotalcite, (V)/Al203, (V)/TiO2 and (V)/SBA-15 catalysts for the partial oxidation of ethanol to acetaldehyde. J Mol Catal A Chem 420:178–189

    Article  CAS  Google Scholar 

  21. Quaranta NE, Martino R, Gambaro L, Thomas H (1994) Selective Dehydrogenation Of Ethanol Over Vanadium-Oxide Catalyst, vol 82. New Developments in Selective Oxidation II

  22. Lakshmi JL, Jones TRB, Gurgi M, Miller JM (2000) Synthesis, characterization and activity studies of vanadia catalysts supported on sol–gel derived Al2O3-ZrO2 mixed oxide. J Mol Catal A-Chem 152(1–2):99–110

    Article  CAS  Google Scholar 

  23. Nair H, Baertsch CD (2008) Method for quantifying redox site densities in metal oxide catalysts: application to the comparison of turnover frequencies for ethanol oxidative dehydrogenation over alumina-supported VOx, MoOx, and WOx catalysts. J Catal 258(1):1–4

    Article  CAS  Google Scholar 

  24. Kilos B, Bell AT, Iglesia E (2009) Mechanism and Site Requirements for Ethanol Oxidation on Vanadium Oxide Domains. J Phys Chem C 113(7):2830–2836

    Article  CAS  Google Scholar 

  25. Gatt JE, Nair H, Baertsch CD (2010) Application of VOx/Al2O3 and Fe-2(MoO4)(3)-MoO3 catalysts for the selective reaction and detection of ethanol in multi-component hydrocarbon fuel mixtures. Appl Catal B Environ 99(1–2):127–134

    Article  CAS  Google Scholar 

  26. Lakshmi LJ, Ju Z, Alyea EC (1999) Synthesis, characterization, and activity studies of vanadia supported on zirconia and phosphorus-modified zirconia. Langmuir 15(10):3521–3528

    Article  CAS  Google Scholar 

  27. Miller JM, Lakshmi LJ (1999) Synthesis, characterization, and activity studies of V2O5/ZrO2-SiO2 catalysts. J Catal 184(1):68–76

    Article  CAS  Google Scholar 

  28. Oyama ST, Somorjai GA (1990) Effect Of Structure In Selective Oxide Catalysis—Oxidation Reactions Of Ethanol And Ethane On Vanadium-Oxide. J Phys Chem 94(12):5022–5028

    Article  CAS  Google Scholar 

  29. Kannan S, Sen T, Sivasanker S (1997) Catalytic transformation of ethanol over microporous vanadium silicate molecular sieves with MEL structure (VS-2). J Catal 170(2):304–310

    Article  CAS  Google Scholar 

  30. Brandao P, Philippou A, Hanif N, Ribeiro-Claro P, Ferreira A, Anderson MW, Rocha J (2002) Synthesis and characterization of two novel large-pore crystalline vanadosilicates. Chem Mater 14(3):1053–1057

    Article  CAS  Google Scholar 

  31. Brandao P, Valente A, Philippou A, Ferreira A, Anderson MW, Rocha J (2003) Hydrothermal synthesis and characterisation of two novel large-pore framework vanadium silicates. Eur J Inorg Chem 6:1175–1180

    Article  Google Scholar 

  32. Feng T, Vohs JM (2005) Temperature-programmed desorption study of the selective oxidation of alcohols on silica-supported vanadium oxide. J Phys Chem B 109(6):2120–2127

    Article  CAS  Google Scholar 

  33. Gucbilmez Y, Dogu T, Balci S (2006) Ethylene and acetaldehyde production by selective oxidation of ethanol using mesoporous V-MCM-41 catalysts. Ind Eng Chem Res 45(10):3496–3502

    Article  CAS  Google Scholar 

  34. Herrera JE, Kwak JH, Hu JZ, Wang Y, Peden CHF (2006) Synthesis of nanodispersed oxides of vanadium, titanium, molybdenum, and tungsten on mesoporous silica using atomic layer deposition. Top Catal 39(3–4):245–255

    Article  CAS  Google Scholar 

  35. Chimentao RJ, Herrera JE, Kwak JH, Medina F, Wang Y, Peden CHF (2007) Oxidation of ethanol to acetaldehyde over Na-promoted vanadium oxide catalysts. Appl Catal A Gen 332(2):263–272

    Article  CAS  Google Scholar 

  36. Gucbilmez Y, Dogu T, Balci S (2009) Activity Comparison of MCM-41 and V-MCM-4 Catalysts for Ethanol Selective Oxidation and DRIFTS Analysis. Int J Chem React Eng 7(7):63

    Google Scholar 

  37. Schramlmarth M, Wokaun A, Pohl M, Krauss HL (1991) J Chem Soc Faraday Trans 87:2635–2646

    Article  CAS  Google Scholar 

  38. Wachs IE (1996) Raman and IR studies of surface metal oxide species on oxide supports: supported metal oxide catalysts. Catal Today 27(3–4):437–455

    Article  CAS  Google Scholar 

  39. Wachs IE (2011) The generality of surface vanadium oxide phases in mixed oxide catalysts. Appl Catal A Gen 391(1–2):36–42

    Article  CAS  Google Scholar 

  40. Bulanek R, Capek L, Setnicka M, Cicmanec P (2011) DR UV-vis Study of the Supported Vanadium Oxide Catalysts. J Phys Chem C 115:12430–12438

    Article  CAS  Google Scholar 

  41. Botkova S, Capek L, Setnicka M, Bulanek R, Cicmanec P, Kaluzova A, Pastva J, Zukal A (2016) VOx species supported on Al2O3-SBA-15 prepared by the grafting of alumina onto SBA-15: structure and activity in the oxidative dehydrogenation of ethane. Reac Kinet Mech Cat 119(1):319–333

    Article  CAS  Google Scholar 

  42. Bulánek R, Kalužova A, Setnička M, Zukal A, Čičmanec P, Mayerová J (2012) Study of vanadium based mesoporous silicas for oxidative dehydrogenation of propane and n-butane. Catal Today 179(1):149–158

    Article  Google Scholar 

  43. Setnicka M, Bulanek R, Capek L, Cicmanec P (2011) n-Butane oxidative dehydrogenation over VOX-HMS catalyst. J Mol Catal A Chem 344(1):1–10

    Article  CAS  Google Scholar 

  44. Nair H, Gatt JE, Miller JT, Baertsch CD (2011) Mechanistic insights into the formation of acetaldehyde and diethyl ether from ethanol over supported VOx, MoOx, and WOx catalysts. J Catal 279(1):144–154

    Article  CAS  Google Scholar 

  45. Zukal A, Siklova H, Cejka J (2008) Grafting of alumina on SBA-15: effect of surface roughness. Langmuir 24(17):9837–9842

    Article  CAS  Google Scholar 

  46. Wachs IE, Weckhuysen BM (1997) Structure and reactivity of surface vanadium oxide species on oxide supports. Appl Catal A Gen 157(1–2):67–90

    Article  CAS  Google Scholar 

  47. Centi G (1996) Nature of active layer in vanadium oxide supported on titanium oxide and control of its reactivity in the selective oxidation and ammoxidation of alkylaromatics. Appl Catal A Gen 147(2):267–298

    Article  CAS  Google Scholar 

  48. Kubelka P, Munk FZ (1931) Tech Phys 12:593

    Google Scholar 

  49. Tauc J (1974) Amorphous and liquid semiconductors. Plenum Press, London

    Book  Google Scholar 

  50. Davis EA, Mott NF (1970) Conduction in non-crystalline Systems 5. conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philos Mag 22(179):903

    Article  CAS  Google Scholar 

  51. Tian HJ, Ross EI, Wachs IE (2006) Quantitative determination of the speciation of surface vanadium oxides and their catalytic activity. J Phys Chem B 110(19):9593–9600

    Article  CAS  Google Scholar 

  52. Sachtler WMH, De Boer NH Catalytic oxidation of propylene to acrolein. In: Proceedings of 3rd Int Congr. Catalysis, Amsterdam, 1964. North-Holland Publishing Company, p. 8

  53. Gao XT, Bare SR, Weckhuysen BM, Wachs IE (1998) In situ spectroscopic investigation of molecular structures of highly dispersed vanadium oxide on silica under various conditions. J Phys Chem B 102(52):10842–10852

    Article  CAS  Google Scholar 

  54. Wu ZL, Dai S, Overbury SH (2010) Multiwavelength Raman Spectroscopic Study of Silica-Supported Vanadium Oxide Catalysts. J Phys Chem C 114(1):412–422

    Article  CAS  Google Scholar 

  55. Pena ML, Dejoz A, Fornes V, Rey E, Vazquez MI, Nieto JML (2001) V-containing MCM-41 and MCM-48 catalysts for the selective oxidation of propane in gas phase. Appl Catal A Gen 209(1–2):155–164

    Article  CAS  Google Scholar 

  56. Santamaria-Gonzalez J, Luque-Zambrana J, Merida-Robles J, Maireles-Torres P, Rodriguez-Castellon E, Jimenez-Lopez A (2000) Catalytic behavior of vanadium-containing mesoporous silicas in the oxidative dehydrogenation of propane. Catal Lett 68(1–2):67–73

    Article  CAS  Google Scholar 

  57. Berndt H, Martin A, Bruckner A, Schreier E, Muller D, Kosslick H, Wolf GU, Lucke B (2000) Structure and catalytic properties of VOx/MCM materials for the partial oxidation of methane to formaldehyde. J Catal 191(2):384–400

    Article  CAS  Google Scholar 

  58. Liu J, Zhao Z, Xu CM, Duan AJ, Jiang GY, Gao JS, Lin WY, Wachs IE (2008) In-situ UV-Raman study on soot combustion over TiO2 or ZrO2-supported vanadium oxide catalysts. Sci China Ser B Chem 51(6):551–561

    Article  CAS  Google Scholar 

  59. Grubert G, Rathousky J, Schulz-Ekloff G, Wark M, Zukal A (1998) Reducibility of vanadium oxide species in MCM41. Microporous Mesoporous Mater 22(1–3):225–236

    Article  CAS  Google Scholar 

  60. Banares MA, Cardoso JH, Agullo-Rueda F, Correa-Bueno JM, Fierro JLG (2000) Dynamic states of V-oxide species: reducibility and performance for methane oxidation on V2O5/SiO2 catalysts as a function of coverage. Catal Lett 64(2–4):191–196

    Article  CAS  Google Scholar 

  61. Kanervo JM, Harlin ME, Krause AOI, Banares MA (2003) Characterisation of alumina-supported vanadium oxide catalysts by kinetic analysis of H-2-TPR data. Catal Today 78(1–4):171–180

    Article  CAS  Google Scholar 

  62. Martinez-Huerta MV, Fierro JLG, Banares MA (2009) Monitoring the states of vanadium oxide during the transformation of TiO(2) anatase-to-rutile under reactive environments: h(2) reduction and oxidative dehydrogenation of ethane. Catal Commun 11(1):15–19

    Article  CAS  Google Scholar 

  63. Martinez-Huerta MV, Gao X, Tian H, Wachs IE, Fierro JLG, Banares MA (2006) Oxidative dehydrogenation of ethane to ethylene over alumina-supported vanadium oxide catalysts: relationship between molecular structures and chemical reactivity. Catal Today 118(3–4):279–287

    Article  CAS  Google Scholar 

  64. Martra G, Arena F, Coluccia S, Frusteri F, Parmaliana A (2000) Factors controlling the selectivity of V2O5 supported catalysts in the oxidative dehydrogenation of propane. Catal Today 63(2–4):197–207

    Article  CAS  Google Scholar 

  65. Koranne MM, Goodwin JG, Marcelin G (1994) Characterization of silica-supported and alumina-supported vanadia catalysts using temperature-programmed reduction. J Catal 148(1):369–377

    Article  CAS  Google Scholar 

  66. Kustrowski P, Segura Y, Chmielarz L, Surman J, Dziembaj R, Cool P, Vansant EF (2006) VOx supported SBA-15 catalysts for the oxidative dehydrogenation of ethylbenzene to styrene in the presence of N2O. Catal Today 114(2–3):307–313

    Article  CAS  Google Scholar 

  67. Arena F, Frusteri F, Parmaliana A (1999) Structure and dispersion of supported-vanadia catalysts. Influence of the oxide carrier. Appl Catal A Gen 176(2):189–199

    Article  CAS  Google Scholar 

  68. Oyama ST, Zhang W (1996) True and spectator intermediates in catalysis: the case of ethanol oxidation on molybdenum oxide as observed by in situ laser Raman spectroscopy. J Am Chem Soc 118(30):7173–7177

    Article  CAS  Google Scholar 

  69. Yoshitake H, Aoki Y, Hemmi S (2006) Mesoporous titania supported-molybdenum catalysts: the formation of a new mesophase and use in ethanol-oxygen catalytic reactions. Microporous Mesoporous Mater 93(1–3):294–303

    Article  CAS  Google Scholar 

  70. Zhang WM, Desikan A, Oyama ST (1995) Effect of support in ethanol oxidation on molybdenum oxide. J Phys Chem 99(39):14468–14476

    Article  CAS  Google Scholar 

  71. Zhang W, Oyama ST, Holstein WL (1996) Non-uniform surface kinetics with two types of sites: the case of ethanol oxidation on molybdenum oxide. Catal Lett 39(1–2):67–71

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support of the Czech Science Foundation GA CR under the Project No. 15-19780S and OP VaVpI: CEMNAT CZ.1.05/4.1.00/11.0251 is highly acknowledged. In addition, we would like to thank Arnošt Zukal from JH INST Prague for synthesis of SBA-15 support and Veronika Podzemná from Center of Materials and Nanotechnology of University of Pardubice for SEM images. The project has been integrated into the National Programme for Sustainability I of the Ministry of Education, Youth and Sports of the Czech Republic through the project Development of the UniCRE Centre, Project code LO1606.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Čičmanec.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Čičmanec, P., Raabová, K., Hidalgo, J.M. et al. Conversion of ethanol to acetaldehyde over VOX-SiO2 catalysts: the effects of support texture and vanadium speciation. Reac Kinet Mech Cat 121, 353–369 (2017). https://doi.org/10.1007/s11144-017-1169-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-017-1169-z

Keywords

Navigation