Skip to main content
Log in

Advantage of the single pellet string reactor for testing real-size industrial pellets of potassium-doped CoMnAl catalyst for the decomposition of N2O

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Two tubular laboratory reactors, the single pellet string reactor (i.d. = 0.55 cm) and the fixed bed reactor (i.d. = 5 cm) were compared on the basis of laboratory experiments of N2O catalytic decomposition and measurements of residence time distribution curves. K/Co4MnAlOx mixed oxide in the form of cylinders (5.1 mm × 5.1 mm) was used as a catalyst. The influence of external diffusion, deviation from plug flow and influence of axial dispersion on N2O conversion obtained in both reactors were discussed. The influence of macroscopic phenomena on the rate of catalytic reaction was significantly lower in the single pellet string reactor, which predetermined it as a suitable laboratory reactor for testing of real-size industrial catalysts. Experimentally obtained results were confirmed by mathematical modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

C A :

Concentration of component A (N2O) (mol m−3)

\(C_{{A_{0} }}\) :

Initial concentration of component A (N2O) (mol m−3)

D eff :

Effective diffusion coefficient (m2 s−1)

\(\bar{D}\) :

Overall diffusivity (m2 s−1)

D k :

Knudsen diffusivity (m2 s−1)

D ij :

Binary diffusion coefficient of molecular diffusivity (m2 s−1)

d k :

Catalyst particle diameter (m)

dm :

Weight of catalyst (kg)

k :

Kinetic constant, 1st order rate law (m3 s−1 kg−1)

k c :

Mass transfer coefficient (m s−1)

M i :

Molar weight of compound i (g mol−1)

Pe :

Peclet number

p :

Pressure (Pa)

q :

Tortuosity

Re :

Reynolds number

r p :

Catalyst particle radius (m)

r 0 :

Catalyst pore radius (m)

Sh :

Sherwood number

Sc :

Schmidt number

\(\bar{t}\) :

The mean of the tracer curve

\(\dot{V}\) :

Volumetric flow (m3 s−1)

v :

Superficial velocity (m s−1)

\(\left( {\sum v } \right)\) :

Diffusion volume

V :

Volume of the catalyst bed (m3)

w :

Reaction rate per unit volume of catalyst bed (mol m−3 s−1)

X A :

Conversion of component A (N2O)

x i :

Molar fraction of i compound

y :

Concentration of Ar in He in the reactors outlet

y 0 :

Concentrations of Ar in He in the reactors inlet

μ :

Dynamic viscosity of gas (Pa.s)

η :

Internal effectiveness factor

Ω :

Overall effectiveness factor

Φ :

Thiele modul

γ i :

Stoichiometric coefficient of component i (N2O)

\(\varepsilon\) :

Porosity of catalyst bed

\(\varepsilon_{p}\) :

Porosity of catalyst particle

\(\sigma_{f}^{2}\) :

Variance of a tracer curve (\({\text{F}}(t/\bar{t})\))

\(\sigma_{t}^{2}\) :

Variance of a tracer curve (F(t))

ρ b :

Bulk density of the catalyst bed (kg m−3)

ρ C :

Bulk density of the catalyst (kg m−3)

ρ :

Density of gas (kg m−3)

References

  1. Snamprogetti S (2014) Catalytic industrial processes. (UNESCO - Encyclopedia of life support system) http://www.eolss.net/sample-chapters/c06/e6-190-03-00.pdf, Accessed 13 Oct 2014

  2. Pérez-Ramírez J, Kapteijn F, Schoffel K, Moulijn JA (2003) Formation and control of N2O in nitric acid production: where do we stand today? Appl Catal B 44:117–151

    Article  Google Scholar 

  3. Xue L, Zhang Ch, He H, Teraoka Y (2007) Catalytic decomposition of N2O over CeO2 promoted Co3O4 spinel catalyst. Appl Catal B 75:167–174

    Article  Google Scholar 

  4. Asano K, Ohnishi Ch, Iwamoto S, Shioya Y, Inoue M (2008) Potassium-doped Co3O4 catalyst for direct decomposition of N2O. Appl Catal B 78:242–249

    Article  CAS  Google Scholar 

  5. Abu-Zied BM, Soliman SA, Abdellah SE (2014) Pure and Ni-substituted Co3O4 spinel catalysts for direct N2O decomposition.  Chin J Catal 35:1105–1112

    Article  CAS  Google Scholar 

  6. Obalová L, Karásková K, Wach A, Kustrowski P, Mamulová-Kutláková K, Michalik S, Jirátová K (2013) Alkali metals as promoters in Co-Mn-Al mixed oxide for N2O decomposition. Appl Catal A 462–463:227–235

    Article  Google Scholar 

  7. Inger M, Wilk M, Saramok M, Grzybek G, Grodzka A, Stelmachowski P, Makowski W, Kotarba A, Sojka Z (2014) Cobalt spinel catalyst for N2O abatement in the pilot plant operation-long-term activity and stability in tail gases. Ind Eng Chem Res 53(25):10335–10342

    Article  CAS  Google Scholar 

  8. Inger M, Kowalik P, Saramok M, Wilk M, Stelmachowski P, Maniak G, Granger P, Kotarba A, Sojka Z (2011) Laboratory and pilot scale synthesis, characterization and reactivity of multicomponent cobalt spinel catalyst for ion temperature removal of N2O from nitric acid plant tail gases. Catal Today 176:365–368

    Article  CAS  Google Scholar 

  9. A. F. Hipólito (2010) Study of the hydrodynamic of a catalytic pilot reactor type single pellet string, in triphasic configuration: Effect of the liquid phase, particles diameter and reactor’s geometry on the characteristics of the flow. Ph.D. Thesis, Technical University of Lisbon

  10. Kallinikos LE, Papayannakos NG (2007) Fluid dynamic characteristics of a structured bed spiral mini-reactor. Chem Eng Sci 62:5979–5988

    Article  CAS  Google Scholar 

  11. Kallinikos LE, Papayannakos NG (2010) Intensification of hydrodesulphurization process with a structured bed spiral mini-reactor. Chem Eng Process 49:1025–1030

    Article  CAS  Google Scholar 

  12. Hipolito AF, Rolland M, Boyer C, de Bellefon C (2010) Single pellet string reactor for intensification of catalyst testing in gas/liquid/solid configuration, oil gas SCi. Technol Rev Inst Fr Pet 65:689–701

    CAS  Google Scholar 

  13. Scott DS, Lee W, Papa J (1974) The measurement of transport coefficients in gas-solid heterogeneous reactions. Chem Eng Sci 29:2155–2167

    Article  CAS  Google Scholar 

  14. Muller A, Ludwig M, Arlit M, Lange R (2014) Catal Today. doi:10.1016/j.cattod.2013.12.051

    Google Scholar 

  15. Haase S, Weiss M, Langsch R, Bauer T, Lange R (2013) Hydrodynamics and mass transfer in three-phase composite minichannel fixed-bed reactors. Chem Eng Sci 94:224–236

    Article  CAS  Google Scholar 

  16. Obalová L, Kovanda F, Jirátová K, Šrámek J, Karásková K, Chromčáková Z, Borovec K, Dej M (2013) New catalyst for removal of N2O from nitric acid plant tail gases. In: Kalenda P, Lubojacký J (eds) 1st international conference on chemical technology (ICCT), Mikulov, 8–10 April 2013

  17. Levenspiel O (1979) The chemical reactor omnibook. OSU Book Stores, Corvallis

    Google Scholar 

  18. Fogler HS (1999) Elements of chemical reaction engineering, 3rd edn. Prentice Hall PTR, New Jersey

    Google Scholar 

  19. Kaptejn F, Moulijn JA (1996) In: Ertl G, Knözinger H, Weitkamp J (eds) Handbook of heterogeneous catalysis, vol 3. Wiley, Weinheim

    Google Scholar 

  20. Obalová L, Jirátová K, Karásková K, Chromčáková Ž (2012) N2O catalytic decomposition—from laboratory experiment to industry reactor. Catal Today 191:116–120

    Article  Google Scholar 

  21. Obalová L, Jiratová K, Kovanda F (2011) Simulation of N2O abatment in waste gases by its decomposition over a K-promoted Co-Mn-Al mixed oxide catalyst. Chin J Catal 32:816–820

    Article  Google Scholar 

  22. Mears DE (1971) The role of axial dispersion in trickle-flow laboratory reactors. Chem Eng Sci 26:1361–1366

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Czech Science Foundation (project GA14-13750S) and by the Ministry of Education, Youth and Sports of the Czech Republic in the “National Feasibility Program I”, project LO1208 “Theoretical Aspects of Energetic Treatment of Waste and Environment Protection against Negative Impacts” and by project of specific research SP2014/48 and SP2015/125.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucie Obalová.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klyushina, A., Pacultová, K. & Obalová, L. Advantage of the single pellet string reactor for testing real-size industrial pellets of potassium-doped CoMnAl catalyst for the decomposition of N2O. Reac Kinet Mech Cat 115, 651–662 (2015). https://doi.org/10.1007/s11144-015-0871-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-015-0871-y

Keywords

Navigation