Skip to main content
Log in

Dehydrogenation of ethylbenzene over Fe–Ce–Rb and Fe–Ce–Cs mixed oxide catalysts

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Fe–Ce mixed oxide catalysts promoted by Rb and Cs have been investigated for the dehydrogenation of ethylbenzene. Fe–Ce–Rb and Fe–Ce–Cs were found to be highly active. X-ray diffraction (XRD) analysis confirmed the formation of RbFeO2 and CsFeO2 in the catalyst. X-ray photoelectron spectroscopy (XPS) analysis suggests a surface composition of the catalysts with an atomic ratio of Rb/Fe = 1, Cs/Fe = 1 and O/Fe = 2, meaning the surface is composed of the binary oxides, RbFeO2 and CsFeO2. We conclude that the active phases of these catalysts are RbFeO2 and CsFeO2, similar to KFeO2 in the case of K–Fe and Fe–Ce–K mixed oxide catalysts. The rate equation of the reaction was determined supposing a Langmuir–Hinshelwood mechanism, in which the competitive adsorption of ethylbenzene and styrene dominate the reaction rate. However, the relative adsorption constant of styrene, Z ST, did not change significantly with the addition of Rb or Cs. The rate constant k increased with the addition of Rb or Cs. The activation energy increased with the addition of Rb or Cs compared with Fe–Ce, and the frequency factor also increased remarkably. Because the strong base points are most likely the active sites, addition of Rb and Cs increased the number of basic sites on the catalyst surface, resulting in higher activity. The kinetic factors, k and Z ST, were applied for the rate equation. The experimental results were in very good agreement with the derived rate equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lee EH (1973) Catal Rev Sci Eng 8:285

    Article  CAS  Google Scholar 

  2. Cavani T, Trifiro F (1995) Appl Catal A 133:219

    Article  CAS  Google Scholar 

  3. Miyakoshi A (2006) Peterotech 29(3):158

    CAS  Google Scholar 

  4. Shinyama K, Mishima Y, Kodakari N (2005) Chem Eng Jpn 69:256

    CAS  Google Scholar 

  5. Stobbe DE, van Buren FR, van Dillen AJ, Geus JW (1992) J Catal 135:533

    Article  CAS  Google Scholar 

  6. Hirano T (1986) Appl Catal 28:119

    Article  CAS  Google Scholar 

  7. Muhler M, Schutze J, Wesemann M, Rayment T, Dent A, Schlogl R, Ertl G (1990) J Catal 126:339

    Article  CAS  Google Scholar 

  8. Kotarba A, Bieniasz W, Ku′strowski P, Stadnicka K, Sojka Z (2011) Appl Catal A 407:100

    Article  CAS  Google Scholar 

  9. Miura H, Ansai R, Mizushima Y, Kurita A, Matsuda T (1990) Sekiyu Gakkaishi J Jpn Petrol Inst 33(6):397

    Article  CAS  Google Scholar 

  10. Itoh N, Xu W-C (1991) J Jpn Petrol Inst 34(5):464–468

    Article  CAS  Google Scholar 

  11. Assabumrungrat S, Suksomboon K, Praserthdam P, Tagawa T, Goto SJ (2002) Chem Eng Jpn 35(3):263

    Article  CAS  Google Scholar 

  12. Mimura N, Saito M (1999) Catal Lett 58:59

    Article  CAS  Google Scholar 

  13. Mimura N, Saito M (2000) Catal Today 55:173

    Article  CAS  Google Scholar 

  14. Saito M, Kimura H, Mimura N, Jingang W, Murata K (2003) Appl Catal A 239:71

    Article  CAS  Google Scholar 

  15. Sakurai Y, Suzaki T, Nakagawa K, Ikenaga N, Aota H, Suzuki T (2002) J Catal 209:16

    Article  CAS  Google Scholar 

  16. Nederlof C, Talay G, Kapteijn F, Makkee M (2012) Appl Catal A 423–424:59

    Google Scholar 

  17. Saito K, Okuda K, Ikenaga N, Miyake T, Suzuki T (2010) J Phys Chem A 114:3845

    Article  CAS  Google Scholar 

  18. Bricker JC (2012) Top Catal 55(19–20):1309–1314

    Article  CAS  Google Scholar 

  19. Abe K, Ohshima M, Kurokawa H, Miura HJ (2010) Jpn Petrol Inst 53(2):89

    Article  CAS  Google Scholar 

  20. Dulamit N, Maicaneanu A, Sayle DC, Stanca M, Craciun R, Olea M, Afloroaei C, Fodor A (2005) Appl Catal A 287:9

    Article  Google Scholar 

  21. Miura H, Ansai R, Kawai H (1994) React Kinet Catal Lett 53(2):323

    Article  CAS  Google Scholar 

  22. Kano Y, Ohshima M, Kurokawa H, Miura H (2010) Reac Kinet Mech Cat 100(1):79

    CAS  Google Scholar 

  23. Balasamy RJ, Khurshid A, Al-Ali AAS, Atanda LA, Sagata K, Asamoto M, Yahiro H, Nomura K, Sano T, Takehira K, Al-Khattaf SS (2010) Appl Catal A 390:225

    Article  CAS  Google Scholar 

  24. Tope BB, Balasamy RJ, Khurshid A, Atanda LA, Yahiro H, Shishido T, Takehira K, Al-Khattaf SS (2011) Appl Catal A 407:118

    Article  CAS  Google Scholar 

  25. Balasamy RJ, Tope BB, Khurshid A, Al-Ali AAL, Atanda LA, Sagata K, Asamoto M, Yahiro H, Nomura K, Sano T, Takehira K, Al-Khattaf SS (2011) Appl Catal A 398:113

    Article  CAS  Google Scholar 

  26. Vijh AK (1975) J Chem Phys 72:5

    CAS  Google Scholar 

  27. Taguchi T, Miura H, Kawai H, Satoh M (1994) Nihon Kagaku Kaishi 619

  28. Muhler M, Schogl R, Ertl G (1992) J Catal 138:413

    Article  CAS  Google Scholar 

  29. Zafar N, Nuss AJ, Sheptyakov D, Jansen M (2010) J Solid State Chem 183:752

    Article  Google Scholar 

  30. Miyakoshi A, Ueno A, Ichikawa M (2001) Appl Catal A 219:249

    Article  CAS  Google Scholar 

  31. Carra S, Forni L (1965) Ind Eng Chem Process Des Develop 4:281

    Article  CAS  Google Scholar 

  32. Miura H, Takahashi S, Mizushima Y, Sugiyama K, Matsuda T (1989) Sekiyu Gakkaishi J Jpn Petrol Inst 32:87

    Article  CAS  Google Scholar 

  33. Lee WJ, Froment GF (2008) Ind Eng Chem Res 47:9183

    Article  CAS  Google Scholar 

  34. Addiego WP, Estrada CA, Goodman DW, Rosynek MP (1994) J Catal 146:407

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Miura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kano, Y., Ohshima, M., Kurokawa, H. et al. Dehydrogenation of ethylbenzene over Fe–Ce–Rb and Fe–Ce–Cs mixed oxide catalysts. Reac Kinet Mech Cat 109, 29–41 (2013). https://doi.org/10.1007/s11144-013-0549-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-013-0549-2

Keywords

Navigation