Skip to main content
Log in

Simulation of Nonlinear Processes in High-Q Microresonators in the Self-Injection Locking Regime with Account of Thermal Effects

  • Published:
Radiophysics and Quantum Electronics Aims and scope

The thermal effects appearing inevitably when laser radiation propagates through high-Q optical microresonators lead to various drifts, fluctuations and unstable regimes. In particular, thermal effects can affect strongly the generation of optical frequency combs and dissipative soliton structures. A way to offset the thermal effects is to use the self-injection effect that locks the laser radiation frequency to the eigenfrequency of the microresonator. In this work we consider the principles and dynamics of the self-injection locking effect at high pump powers in the nonlinear regimes, including those induced by thermal nonlinearity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. B. Braginsky, M. L.Gorodetsky, and V. S. Ilchenko, Phys. Lett. A, 137, 393–397 (1989). https://doi.org/10.1016/0375-9601(89)90912-2

    Article  ADS  Google Scholar 

  2. M. L. Gorodetsky, Optical Microresonators with Gigantic Q-factor [in Russian], Fizmatlit, Moscow (2011).

    Google Scholar 

  3. V. S. Ilchenko and A.B.Matsko, IEEE J. Sel. Top. Quantum Electron., 12, 15–32 (2006). https://doi.org/10.1109/JSTQE.2005.862943

    Article  Google Scholar 

  4. J.Ward and O.Benson, Laser Photon. Rev., 5, 553–570 (2011). https://doi.org/10.1002/lpor.201000025

    Article  ADS  Google Scholar 

  5. D. V. Strekalov, C. Marquardt, A. B. Matsko, et al., J. Opt., 18, 123002 (2016). https://doi.org/10.1088/2040-8978/18/12/123002

    Article  ADS  Google Scholar 

  6. V. Ilchenko and M. L.Gorodetskii, Laser Phys., 2, 1004–1009 (1992).

    Google Scholar 

  7. A. E. Fomin, M. L. Gorodetsky, I. S.Grudinin, and V. S. Ilchenko, J. Opt. Soc. Am. B, 22, 459–465 (2005). https://doi.org/10.1364/JOSAB.22.000459

    Article  ADS  Google Scholar 

  8. T. Carmon, L.Yang, and K. J.Vahala, Opt. Express, 12, 4742–4750 (2004). https://doi.org/10.1364/OPEX.12.004742

    Article  ADS  Google Scholar 

  9. S. Diallo, G. Lin, and Y. K. Chembo, Opt. Lett., 40, 3834–3837 (2015). https://doi.org/10.1364/OL.40.003834

    Article  ADS  Google Scholar 

  10. A. Leshem, Z.Qi, T. F. Carruthers, et al., Phys. Rev. A, 103, 013512 (2021). https://doi.org/10.1103/PhysRevA.103.013512

    Article  ADS  Google Scholar 

  11. T. Herr, V. Brasch, J.D. Jost, et al., Nature Photon., 8, 145–152 (2014). https://doi.org/10.1038/nphoton.2013.343

    Article  ADS  Google Scholar 

  12. C. Bao, Y. Xuan, J.A. Jaramillo-Villegas, et al., Opt. Lett., 42, 2519–2522 (2017). https://doi.org/10.1364/OL.42.002519

    Article  ADS  Google Scholar 

  13. V. Brasch, M.Geiselmann, M. H.P. Pfeiffer, and T. J.Kippenberg, Opt. Express, 24, 29312–29320 (2016). https://doi.org/10.1364/OE.24.029312

    Article  ADS  Google Scholar 

  14. T. Wildi, V. Brasch, J. Liu, et al., Opt. Lett., 44, 4447–4450 (2019). https://doi.org/10.1364/OL.44.004447

    Article  ADS  Google Scholar 

  15. H. Zhou, Y.Geng, W. Cui, et al., Light Sci. Appl., 8, 50 (2019). https://doi.org/10.1038/s41377-019-0161-y

    Article  ADS  Google Scholar 

  16. G. Moille, X. Lu, A.Rao, et al., Phys. Rev. Applied, 12, 034057 (2019). https://doi.org/10.1103/PhysRevApplied.12.034057

  17. N. M.Kondratiev, V.E. Lobanov, A. V.Cherenkov, et al., Opt. Express, 25, 28167–28178 (2017). https://doi.org/10.1364/OE.25.028167

  18. M. L. Gorodetsky, A.D.Pryamikov, and V. S. Ilchenko, J. Opt. Soc. Am. B, 17, 1051–1057 (2000). https://doi.org/10.1364/JOSAB.17.001051

    Article  ADS  Google Scholar 

  19. V. V.Vassiliev, V. L.Velichansky, V. S. Ilchenko, et al., Opt. Commun., 158, 305–312 (1998). https://doi.org/10.1016/S0030-4018(98)00578-1

    Article  ADS  Google Scholar 

  20. W. Liang, V. S. Ilchenko, D.Eliyahu, et al., Nat. Commun., 6, 7371 (2015). https://doi.org/10.1038/ncomms8371

  21. A. S.Voloshin, N.M.Kondratiev, G. V. Lihachev, et al., Nat. Commun., 12, 235 (2021). https://doi.org/10.1038/s41467-020-20196-y

    Article  ADS  Google Scholar 

  22. H. Guo, M. Karpov, E. Lucas, et al., Nature Phys., 13, 94–102 (2017). https://doi.org/10.1038/nphys3893

    Article  ADS  Google Scholar 

  23. V. E. Lobanov, N. M.Kondratiev, and I.A.Bilenko, Opt. Lett., 46, 2380–2383 (2021). https://doi.org/10.1364/OL.422988

    Article  ADS  Google Scholar 

  24. R.R. Galiev, N. M.Kondratiev, V. E. Lobanov, et al., Phys. Rev. Applied, 14, 014036 (2020). https://doi.org/10.1103/PhysRevApplied.14.014036

    Article  ADS  Google Scholar 

  25. V. E. Lobanov, G.V. Lihachev, N.G.Pavlov, et al., Opt. Express, 24, 27382–27394 (2016). https://doi.org/10.1364/OE.24.027382

  26. N. M.Kondratiev, V. E. Lobanov, E.A. Lonshakov, et al., Opt. Express, 28, 38892–38906 (2020). https://doi.org/10.1364/OE.411544

    Article  ADS  Google Scholar 

  27. N. M.Kondratiev and V. E. Lobanov, Phys. Rev. A, 101, 013816 (2020). https://doi.org/10.1103/PhysRevA.101.013816

    Article  ADS  Google Scholar 

  28. A. E. Shitikov, I. I. Lykov, O.V. Benderov, et al., Opt. Express, 31, 313–327 (2023). https://doi.org/10.1364/OE.478009

    Article  ADS  Google Scholar 

  29. V. E. Lobanov, G. Lihachev, T. J.Kippenberg, and M. L.Gorodetsky, Opt. Express, 23, 7713–7721 (2015). https://doi.org/10.1364/OE.23.007713

    Article  ADS  Google Scholar 

  30. V. E. Lobanov, N. M.Kondratiev, A. E. Shitikov, et al., Phys. Rev. A, 100, 013807 (2019). https://doi.org/10.1103/PhysRevA.100.013807

    Article  ADS  Google Scholar 

  31. H. Liu, S.-W.Huang, W.Wang, et al., Photon. Res., 10, 1877–1885 (2022). https://doi.org/10.1364/PRJ.459403

  32. X. Xue, Y. Xuan, P.-H.Wang, et al., Laser Photon. Rev., 9, L23–L28 (2015). https://doi.org/10.1002/lpor.201500107

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Pavlov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 66, Nos. 2-3, pp. 176–186, February–March 2023. Russian DOI: https://doi.org/10.52452/00213462_2023_66_02_176

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavlov, V.I., Kondratiev, N.M. & Lobanov, V.E. Simulation of Nonlinear Processes in High-Q Microresonators in the Self-Injection Locking Regime with Account of Thermal Effects. Radiophys Quantum El 66, 157–166 (2023). https://doi.org/10.1007/s11141-023-10283-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-023-10283-7

Navigation