Skip to main content
Log in

Gyrotron Cavity with an Azimuthally Asymmetric, Mechanically Variable Cross Section

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We propose an electromechanical method of continuous frequency tuning of the gyrotrons operating in the subterahertz frequency range. The method is based on the use of a quasisymmetric operating mode excited in a cavity with an azimuthally asymmetric cross section. Variations in the eigenfrequency of the near-cutoff wave in such a cavity are ensured by changing its cross section mechanically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.A.Nanni, A.B.Barnes, R. G. Griffin, and R. J.Temkin, IEEE Trans. Terahertz Sci. Technol., 1, 145–163 (2011). https://doi.org/10.1109/TTHZ.2011.2159546

    Article  ADS  Google Scholar 

  2. G. Y. Golubiatnikov, M. A.Koshelev, A. I.Tsvetkov, et al., IEEE Trans. Terahertz Sci. Technol., 10, No. 5, 502–512 (2020). https://doi.org/10.1109/TTHZ.2020.2984459

  3. M. Blank and K. Felch, eMagRes, 7, No. 4, 155–166 (2018). https://doi.org/10.1002/9780470034590.emrstm1582

  4. V. V. Denysenkov, M. J.Prandolini, M. Gafurov, et al., Phys. Chem. Chem. Phys., 12, 5786–5790 (2010). https://doi.org/10.1039/C003697H

    Article  Google Scholar 

  5. M.Yu.Glyavin, G.G.Denisov, V. E. Zapevalov, et al., Phys. Usp., 59, 595–604 (2016). https://doi.org/10.3367/UFNe.2016.02.037801

    Article  ADS  Google Scholar 

  6. M. A.Koshelev, A. I.Tsvetkov, M. V. Morozkin, et al., J. Mol. Spectrosc., 331, 9–16 (2017). https://doi.org/10.1016/j.jms.2016.10.014

    Article  ADS  Google Scholar 

  7. M.A.Koshelev, G.Yu. Golubyatnikov, I.N.Vilkov, and M.Yu.Tretyakov, J. Quant. Spectrosc. Radiat. Transf., 278, 108001 (2022). https://doi.org/10.1016/j.jqsrt.2021.108001

  8. Y.Vondracek, J.Dielmann-Gessner, M. Lubitz, et al., J. Chem. Phys., 141, No. 22, 22D534 (2014). https://doi.org/10.1063/1.4903237

    Article  Google Scholar 

  9. W. Zhang, E.R. Brown, M.Rahman, and M. L. Norton, Appl. Phys. Lett., 102, No. 2, 023701 (2013). https://doi.org/10.1063/1.4775696

  10. T. Idehara, H.Tsuchiya, O.Watanabe, et al., Int. J. Infrared Millim. Waves, 27, No. 3, 319–331 (2006). https://doi.org/10.1007/s10762-006-9084-9

  11. M.Y. Glyavin, A. G. Luchinin, and G.Y. Golubiatnikov, Phys. Rev. Lett., 100, No. 1, 015101 (2008).

    Article  ADS  Google Scholar 

  12. V. L. Bratman, M.Yu.Glyavin, Yu. K. Kalynov, et al., J. Infrared Millim. Terahertz Waves, 32, No. 3, 371–379 (2011).

    Article  Google Scholar 

  13. T. Idehara and S.P. Sabchevski, J. Infrared Millim. Terahertz Waves, 33, 667–694 (2012). https://doi.org/10.1007/s10762-011-9862-x

    Article  Google Scholar 

  14. M. Y. Glyavin and G. G. Denisov, in: Int. Conf. Infrared, Millimeter, Terahertz Waves, September 9–14, 2018, Nagoya, Japan, p. 851012.

  15. A. Fokin, M. Glyavin, G. Golubiatnikov, et al., Sci. Rep., 8, No. 1, 4317 (2018). https://doi.org/10.1038/s41598-018-22772-1

    Article  ADS  Google Scholar 

  16. Y.Tatematsu, EPJ Web Conf., 195, 01018 (2018). https://doi.org/10.1051/epjconf/201819501018

    Article  Google Scholar 

  17. M. Thumm, J. Infrared Millim. Terahertz Waves, 41, 1–140 (2020). https://doi.org/10.1007/s10762-019-00631-y

    Article  Google Scholar 

  18. M. K.Hornstein, V. S. Bajaj, R. G. Griffin, and R. J.Temkin, IEEE Trans. Plasma Sci., 34, No. 3, 524–533 (2006). https://doi.org/10.1109/TPS.2006.875769

    Article  ADS  Google Scholar 

  19. V. L. Bratman, Y. K. Kalynov, and V.N.Manuilov, Phys. Rev. Lett., 102, No. 24, 245101 (2009). https://doi.org/10.1103/PhysRevLett.102.245101

  20. I.V. Bandurkin, V. L. Bratman, Y. K. Kalynov, et al., IEEE Trans. Electron Dev., 65, 2287–2293 (2018). https://doi.org/10.1109/TED.2018.2797311

    Article  ADS  Google Scholar 

  21. M. Blank, P. Borchard, S.Cauffman, and K. Felch, in: Int. Conf. Infrared, Millimeter, Terahertz Waves, September 9–14, 2018, Nagoya, Japan, p. 8510010.

  22. Yu.K.Kalynov, V.N.Manuilov, A.Sh.Fiks, and N.A.Zavolskiy, Appl. Phys. Lett., 114, 213502 (2019). https://doi.org/10.1063/1.5094875

  23. M. K.Hornstein, V. S. Bajaj, R. G. Griffin, K. E. Kreischer, et al., IEEE Trans. Electron Dev., 52, No. 5, 798–807 (2005). https://doi.org/10.1109/TED.2005.845818

    Article  ADS  Google Scholar 

  24. T. H. Chang, T. Idehara, I. Ogawa, et al., J. Appl. Phys., 105, 063304 (2009). https://doi.org/10.1063/1.3097334

  25. A. C.Torrezan, M. A. Shapiro, J.R. Sirigiri, et al., IEEE Trans. Electron Dev., 58, No. 8, 2777–2783 (2011). https://doi.org/10.1109/TED.2011.2148721

    Article  ADS  Google Scholar 

  26. V. L. Bratman, A.V. Savilov, and T.H.Chang, Radiophys. Quantum Electron., 58, No. 9, 660–672 (2016). https://doi.org/10.1007/s11141-016-9638-1

    Article  ADS  Google Scholar 

  27. V. E. Zapevalov, in: Proc. 8th Int. Workshop on Strong Microwaves and Terahertz Waves: Sources and Applications, July 9–16, 2011, Nizhny Novgorod–St. Petersburg, pp. 143–144.

  28. V. L. Bratman, A.E. Fedotov, Y.K.Kalynov, et al., IEEE Trans. Electron Dev., 64, No. 12, 5147–5150 (2017). https://doi.org/10.1109/TED.2017.2766281

  29. A. E. Fedotov, R. M.Rozental, I. V. Zotova, et al., J. Infrared Millim. Terahertz Waves, 39, No. 10, 975–983 (2018). https://doi.org/10.1007/s10762-018-0522-2

    Article  Google Scholar 

  30. Y. K. Kalynov, I.V. Osharin, and A.V. Savilov, IEEE Trans. Electron Dev., 64, No. 11, 4693–4699 (2017). https://doi.org/10.1109/TED.2017.2751098

    Article  ADS  Google Scholar 

  31. W. He, K.Ronald, A.R.Young, et al., IEEE Trans. Electron Dev., 52, No. 5, 839–844 (2005). https://doi.org/10.1109/TED.2005.845858

  32. V. L. Bratman, G. G. Denisov, S.V. Samsonov, et al., Radiophys. Quantum Electron., 50, No. 1, 36–48 (2007). https://doi.org/10.1007/s11141-007-0005-0

    Article  ADS  Google Scholar 

  33. S. V. Samsonov, G.G.Denisov, A.A.Bogdashov, and I.G.Gachev, IEEE Trans. Electron Dev., 68, No. 11, 5846–5850 (2021). https://doi.org/10.1109/TED.2021.3114141

    Article  ADS  Google Scholar 

  34. I. I. Antakov, S.P. Belov, L. I. Gershtein, et al., JETP Lett., 19, No. 10, 329–330 (1974).

    ADS  Google Scholar 

  35. G. F. Brand, N. G. Douglas, M. Gross, et al., Int. J. Infrared Millim. Waves, 3, 725–734 (1982). https://doi.org/10.1007/BF01009730

    Article  ADS  Google Scholar 

  36. A. W. Fliflet, T.A.Hargreaves, R.P. Fischer, et al., J. Fusion Energy, 9, 31–58 (1990). https://doi.org/10.1007/BF01057321

    Article  ADS  Google Scholar 

  37. O.Dumbrajs and A.Möbius, Int. J. Electron., 84, No. 4, 411–419 (1998). https://doi.org/10.1080/002072198134751

    Article  Google Scholar 

  38. M.Yu.Glyavin, A.G. Luchinin, M.V. Morozkin, and V. I. Khizhnyak, Radiophys. Quantum Electron., 51, No. 1, 57–63 (2008). https://doi.org/10.1007/s11141-008-9006-x

    Article  ADS  Google Scholar 

  39. M.A.Khozin, G.G.Denisov, S.V.Kuzikov, and A.B.Pavelyev, Radiophys. Quantum Electron., 53, No. 2, 111–121 (2010). https://doi.org/10.1007/s11141-010-9207-y

    Article  ADS  Google Scholar 

  40. V. L. Bratman, Y. K. Kalynov, G. I. Kalynova, et al., IEEE Trans. Electron Dev., 61, No. 10, 3529–3533 (2014). https://doi.org/10.1109/TED.2014.2350084

    Article  ADS  Google Scholar 

  41. G. S.Nusinovich, Phys. Plasmas, 26, No. 5, 053107 (2019). https://doi.org/10.1063/1.5099909

  42. X. Guan, J. Zhang, W. Fu, and D. Lu, Electronics, 10, No. 5, 526 (2021). https://doi.org/10.3390/electronics10050526

    Article  Google Scholar 

  43. W. Fu, X.Guan, and Y.Yan, Phys. Plasmas, 26, No. 4, 043109 (2019). https://doi.org/10.1063/1.5090471

  44. I.V. Bandurkin, G. I. Kalynova, Yu. K. Kalynov, et al., IEEE Trans. Electron Dev., 68, 347–352 (2021). https://doi.org/10.1109/TED.2020.3039209

    Article  ADS  Google Scholar 

  45. I.V. Bandurkin, I.V. Osharin, A.V. Savilov, and D.Yu. Shchegolkov, in: 46th Int. Conf. Infrared, Millimeter and Terahertz Waves, August 29—September 3, 2021, Chengdu, China, p. 9567498. https://doi.org/10.1109/IRMMW-THz50926.2021.9567498

  46. G. S. Nusinovich, D.G.Kashyn, and T.M.Antonsen, Appl. Phys. Lett., 106, No. 1, 013502 (2015). https://doi.org/10.1063/1.4905508

  47. A.P. Fokin, A. S. Sedov, and A. S. Zuev, Rev. Sci. Instrum., 91, No. 2, 024706 (2020). https://doi.org/10.1063/1.5140720

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Savilov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 65, Nos. 5–6, pp. 392–405, May–June 2022. Russian DOI: https://doi.org/10.52452/00213462_2022_65_05_392

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bandurkin, I.V., Kalynov, Y.K., Osharin, I.V. et al. Gyrotron Cavity with an Azimuthally Asymmetric, Mechanically Variable Cross Section. Radiophys Quantum El 65, 358–370 (2022). https://doi.org/10.1007/s11141-023-10219-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-023-10219-1

Navigation