Skip to main content
Log in

Nonlinear Acoustic Effects in Polycrystalline Solids with Frequency-Dependent Saturation of Hysteresis Losses

  • Published:
Radiophysics and Quantum Electronics Aims and scope

Based on the modification of the quasi-static Davidenkov hysteresis, we propose a dynamic equation of state for polycrystalline solids with frequency-dependent saturation of the amplitude-dependent internal friction effects. The nonlinear propagation of an initially harmonic longitudinal elastic wave in a rod made of such a material is studied by the perturbation method. Numerical and graphical analysis of the obtained solutions is carried out and the amplitude–frequency dependences of nonlinear effects are revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. E. Nazarov, L. A. Ostrovsky, I. A. Soustova, and A. M. Sutin, Phys. Earth Planet. Inter., 50, No. 1, 65–73 (1998). https://doi.org/10.1016/0031-9201(88)90094-5

    Article  ADS  Google Scholar 

  2. K. A. Naugol’nykh and L. A. Ostrovsky, Nonlinear Wave Processes in Acoustics, Cambridge University Press, Cambridge (1998).

  3. O. V. Rudenko, Phys. Usp., 49, No. 1, 69–87 (2006). https://doi.org/10.1070/PU2006v049n01ABEH005876

    Article  ADS  MathSciNet  Google Scholar 

  4. O. V. Rudenko, Phys. Usp., 56, No. 7, 683–690 (2013). https://doi.org/10.3367/UFNe.0183.201307b.0719

    Article  ADS  Google Scholar 

  5. V. E. Nazarov and A. V. Radostin, Nonlinear Wave Processes in Elastic Micro-Inhomogeneous Solids, Wiley, Hoboken (2015).

  6. L. K. Zarembo and V. A. Krasil’nikov, Sov. Phys. Usp., 13, 778–797 (1970). https://doi.org/10.1070/PU1971v013n06ABEH004281

    Article  ADS  Google Scholar 

  7. L. D. Landau and E. M. Lifshitz, Theory of Elasticity, Pergamon Press, London (1959).

  8. V. E. Nazarov and L. A. Ostrovsky, Sov. Phys. Acoust., 36, 57–60 (1990).

    Google Scholar 

  9. M. A. Isakovich, General Acoustics [in Russian], Nauka, Moscow (1973).

  10. A. Granato and K. Lücke, J. Appl. Phys., 27, No. 6, 583–593 (1956). https://doi.org/10.1063/1.1722436

    Article  ADS  Google Scholar 

  11. N. N. Davidenkov, Zh. Tekh. Fiz., 8, No. 6, 483–499 (1938).

    Google Scholar 

  12. S. Asano, J. Phys. Soc. Jap., 29, No. 4, 952–963 (1970). https://doi.org/10.1143/JPSJ.29.952

    Article  ADS  Google Scholar 

  13. S. A. Ambartzumyan, Multi-Modulus Theory of Elasticity [in Russian], Nauka, Moscow (1982).

  14. O. V. Rudenko and C. M. Hedberg, Dokl. Math., 91, No. 2, 232–235 (2015). https://doi.org/10.1134/S1064562415020337

    Article  MathSciNet  Google Scholar 

  15. O. V. Rudenko, Izv. Vyssh. Uchebn. Zaved., Prikl. Nelin. Din., 26, No. 3, 7–34 (2018). https://doi.org/10.18500/0869-6632-2018-26-3-7-34

    Article  Google Scholar 

  16. V. E. Nazarov, S. B. Kiyashko, and A. V. Radostin, Radiophys. Quantum Electron., 61, No. 6, 418–425 (2018). https://doi.org/10.1007/s11141-018-9903-6

    Article  ADS  Google Scholar 

  17. L. G. Merkulov, ed., Ultrasound Methods of Study of Dislocations [translated from English and German], Inostrannaya Literatura, Moscow (1963).

  18. W. P. Mason, ed., Physical Acoustics, Vol. 4: Applications to Quantum and Solid State Physics, Part A, Academic Press, New York (1966).

  19. D. H. Niblett and J. Wilks, Adv. Phys., 9, No. 33, 1–88 (1960). https://doi.org/10.1080/00018736000101159

    Article  ADS  Google Scholar 

  20. A. Granato and K. Lücke, J. Appl. Phys., 52, No. 12, 7136–7142 (1981). https://doi.org/10.1063/1.328687

    Article  ADS  Google Scholar 

  21. V. S. Postnikov, ed., Internal Friction and Defects in Metals [translated from English and German], Metallurgiya, Moscow (1965).

  22. V. S. Postnikov, Internal Friction in Metals [in Russian], Metallurgiya, Moscow (1974).

  23. M. A. Krishtal and S. A. Golovin, Internal Friction and Structure of Metals [in Russian], Metallurgiya, Moscow (1976).

  24. A. B. Lebedev, Phys. Solid State, 41, No. 7, 1105–1111 (1999). https://doi.org/10.1134/1.1130947

    Article  ADS  Google Scholar 

  25. T. A. Read, Phys. Rev., 58, No. 4, 371–380 (1940). https://doi.org/10.1103/PhysRev.58.371

    Article  ADS  Google Scholar 

  26. M. V. Klassen-Neklyudova and V. L. Indenbom, ed., Dislocations and Mechanical Properties of Crystals [translated from English], Inostrannaya Literatura, Moscow (1960).

  27. V. E. Nazarov and S. B. Kiyashko, Radiophys. Quantum. Electron, 56, No. 10, 686–696 (2014). https://doi.org/10.1007/s11141-014-9473-1

    Article  ADS  Google Scholar 

  28. V. E. Nazarov and S. B. Kiyashko, Radiophys. Quantum. Electron, 59, No. 2, 111–122 (2016). https://doi.org/10.1007/s11141-016-9680-z

    Article  ADS  Google Scholar 

  29. V. E. Nazarov and S. B. Kiyashko, Tech. Phys. Lett., 40, 673–675 (2014). https://doi.org/10.1134/S1063785014080124

    Article  ADS  Google Scholar 

  30. S. Chikazumi, Physics of Magnetism, IBM Thomas J. Watson Research Center, New York (1964).

  31. D. V. Sivukhin, A General Course in Physics, Vol. 3. Electricity [in Russian], Fizmatlit, Moscow (2004).

  32. O. V. Rudenko, Defektoskopiya, No. 8, 24–32 (1993).

  33. A. I. Korobov and M. Yu. Izosimova, Acoust. Phys., 52, No. 5, 589–597 (2006). https://doi.org/10.1134/S1063771006050137

    Article  ADS  Google Scholar 

  34. M. Yu. Izosimova, A. I. Korobov, and O. V. Rudenko, Acoust. Phys., 55, No. 2, 153–159 (2009). https://doi.org/10.1134/S106377100902002X

    Article  ADS  Google Scholar 

  35. A. I. Korobov, A. I. Kokshaisky, N. V. Shirgina, and V. A. Akhmatgaliev, Acoust. Phys., 63, No. 5, 524–530 (2017). https://doi.org/10.1134/S1063771017040066

    Article  ADS  Google Scholar 

  36. A. I. Kokshaisky, A. I. Korobov, and N. V. Shirgina, Acoust. Phys., 63, No. 2, 154–158 (2017). https://doi.org/10.1134/S1063771017010031

    Article  ADS  Google Scholar 

  37. A. I. Korobov and V. M. Prokhorov, Acoust. Phys., 62, No. 6, 681–687 (2016). https://doi.org/10.1134/S1063771016050067

    Article  ADS  Google Scholar 

  38. A. D. Volkov, A. I. Kokshaisky, A. I. Korobov, and V. M. Prokhorov, Acoust. Phys., 61, No. 6, 651–656 (2015). https://doi.org/10.1134/S1063771015060147

    Article  ADS  Google Scholar 

  39. T. Kundu, ed., Nonlinear Ultrasonic and Vibro-Acoustical Techniques for Nondestructive Evaluation, Springer Nature Swizerland AG, Cham (2019).

  40. C. J. Lissenden, J. Appl. Phys., 129, 021101 (2021). https://doi.org/10.1063/5.0038340

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Nazarov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 64, No. 5, pp. 366–372, May 2021. Russian DOI: 10.52452/00213462_2021_64_05_366

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazarov, V.E., Kiyashko, S.B. Nonlinear Acoustic Effects in Polycrystalline Solids with Frequency-Dependent Saturation of Hysteresis Losses. Radiophys Quantum El 64, 332–337 (2021). https://doi.org/10.1007/s11141-022-10135-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-022-10135-w

Navigation