Skip to main content
Log in

Experimental study of a continuous-wave high-stability second-harmonic gyrotron for spectroscopy of dynamically polarized nuclei

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We present the results of the experiments on a continuous-wave gyrotron with an output frequency of about 260 GHz, which has been developed for dynamic polarization of nuclei and is operated at the second cyclotron-frequency harmonic. For an accelerating voltage of 16 kV and a beam current of 0.3 A, a maximum continuous-wave radiation power of about 200 W has been obtained. Measurements of the thermal load on the resonator cavity allow evaluating its actual ohmic Q-factor. Gyrotron radiation is also observed at other frequencies and modes. Their generation zones and the structure of the output radiation have been studied. Long-term stability of gyrotron parameters has been determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. Bykov, A. Eremeev, M. Glyavin, et al., IEEE Trans. Plasma Sci., 32, No. 1, 67 (2004).

    Article  ADS  Google Scholar 

  2. T. Idehara, I. Ogawa, La Agusu, et al., Int. J. Infrared Millimeter Waves, 28, 433 (2007).

    Article  ADS  Google Scholar 

  3. M. K. Hornstein, V. S. Bajaj, R. G. Griffin, and R. J. Temkin, IEEE Trans. Plasma Sci., 35, No. 1, 27 (2007).

    Article  ADS  Google Scholar 

  4. A. V. Gaponov, M. I. Petelin, and V. K. Yulpatov, Radiophys. Quantum Electron., 10, Nos. 9–10, 794 (1967).

    ADS  Google Scholar 

  5. G. S. Nusinovich, Introduction to the Physics of Gyrotrons, The Johns Hopkins Univ. Press, Baltimore (2004).

    Google Scholar 

  6. N. A. Zavolsky, V. E. Zapevalov, O. V. Malygin, et al., Radiophys. Quantum Electron., 52, Nos. 5–6, 379 (2009).

    Article  ADS  Google Scholar 

  7. V. E. Zapevalov, N. A. Zavol’skiy, O. V. Malygin, et al., Radiophys. Quantum Electron., 52, No. 12, 878 (2009).

    Article  ADS  Google Scholar 

  8. V. E. Zapevalov, S.Yu.Kornishin, A.V.Kotov, et al., Radiophys. Quantum Electron., 53 (2010) (in print).

  9. M. Yu. Glyavin, N. A. Zavolsky, V. E. Zapevalov, et al., Radiophys. Quantum Electron., 52, Nos. 5–6, 370 (2009).

    Article  ADS  Google Scholar 

  10. A. V. Gaponov, A. L. Gol’denberg, D. P. Grigor’ev, et al., Radiophys. Quantum Electron., 18, No. 2, 204 (1975).

    Article  ADS  Google Scholar 

  11. G. S. Nusinovich and T. B. Pankratova, in: Gyrotrons [in Russian], Inst. Appl. Phys., Gorky (1981), p. 169.

  12. T. Idehara, K. Shibutani, H. Nojima, et al., Int. J. Infrared Millimeter Waves, 19, No. 10, 1303 (1998).

    Article  Google Scholar 

  13. G. S. Nusinovich, Radiotekh. Élektron., 19, No. 8, 1788 (1974).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Zapevalov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 53, No. 4, pp. 260–268, April 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Venediktov, N.P., Dubrov, V.V., Zapevalov, V.E. et al. Experimental study of a continuous-wave high-stability second-harmonic gyrotron for spectroscopy of dynamically polarized nuclei. Radiophys Quantum El 53, 237–243 (2010). https://doi.org/10.1007/s11141-010-9222-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-010-9222-z

Keywords

Navigation