Skip to main content
Log in

System for the formation of an electron beam in a 258 GHz gyrotron designed for experiments on dynamic polarization of nuclei

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We consider the features of a system for the formation of an electron beam in a continuouswave high-stability gyrotron at the second gyrofrequency harmonic with an operating frequency of 258 GHz. The problems related to the maintenance of the required beam parameters are analyzed. The procedure and results of numerical simulation of the electron gun and collector of the gyrotron are described. The influence of various physical factors on the characteristics of the electronoptical system of the gyrotron are studied. The design of the electron beam formation system is described along with the results of measuring its parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. V. Bajaj, C. Farrar, M. Hornstein, et al., J. Magn. Reson., 160, 85 (2002).

    Article  ADS  Google Scholar 

  2. V. S. Bajaj, M.K. Hornstein, K.E. Kreisher, et al., J. Magn. Reson., 189, 251 (2007).

    Article  ADS  Google Scholar 

  3. T. Idehara, I. Ogawa, La Agusu, et al., Int. J. Infrared Millimeter Waves, 28, 433 (2007).

    Article  ADS  Google Scholar 

  4. M. K. Hornstein, V. S. Bajaj, R.G. Griffin, and R. J. Temkin, IEEE Trans. Plasma Sci., 35, No. 1, 27 (2007).

    Article  ADS  Google Scholar 

  5. A. L. Goldenberg, G.G. Denisov, V.E. Zapevalov, et al., Radiophys. Quantum Electron., 39, No. 6, 423 (1996).

    Article  ADS  Google Scholar 

  6. G. S. Nusinovich, Introduction to the Physics of Gyrotrons, The Johns Hopkins Univ. Press, Baltimore (2004).

    Google Scholar 

  7. Sh. E. Tsimring, Electron Beams and Microwave Vacuum Electronics, Wiley, Hoboken (2007).

    Google Scholar 

  8. A. N. Kuftin, V.K. Lygin, V.N.Manuilov, et al., Int. J. Infrared Millimeter Waves, 20, No. 3, 361 (1999).

    Article  Google Scholar 

  9. Sh. E. Tsimring, Int. J. Infrared Millimeter Waves, 22, 1433 (2001).

    Article  Google Scholar 

  10. P. V. Krivosheev, V.K. Lygin, V.N. Manuilov, and Sh. E. Tsimring, Int. J. Infrared Millimeter Waves, 22, No. 8, 1119 (2001).

    Article  Google Scholar 

  11. V. E. Zapevalov, A. Sh. Fix, E. A. Kopelovich, et al., in: Proceedings of Strong Microwaves: Sources and Applications, VII International Workshop. Nizhny Novgorod, p. 117.

  12. N. A. Zavolsky, V. E. Zapevalov, O.V. Malygin, et al., Radiophys. Quantum Electron., 52, Nos. 5–6, 379 (2009).

    Article  ADS  Google Scholar 

  13. V.K. Lygin, Int. J. Infrared Millimeter Waves, 16, No. 2, 363 (1995).

    Article  ADS  Google Scholar 

  14. V. E. Zapevalov, V. V. Dubrov, A. Sh. Fix, et al., in: 34th Int. Conf. on Infrared and Millimeter Waves and 17th Int. Conference on Terahertz Electronics, September 20–27, 2009, Busan, Korea, p.W3D04.0389.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Zapevalov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 53, No. 4, pp. 251–259, April 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zapevalov, V.E., Kornishin, S.Y., Kotov, A.V. et al. System for the formation of an electron beam in a 258 GHz gyrotron designed for experiments on dynamic polarization of nuclei. Radiophys Quantum El 53, 229–236 (2010). https://doi.org/10.1007/s11141-010-9221-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-010-9221-0

Keywords

Navigation