Skip to main content
Log in

Large-orbit Subterahertz and Terahertz gyrotrons

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We review briefly the main ideas and achievements in the field of physics related to shortwavelength large-orbit gyrotrons, in which the coupling of electrons with the working mode and the discrimination of parasitic modes in the case of resonance at the high cyclotron harmonic are more efficient compared with conventional gyrotrons. The results of studying a new large-orbit gyrotron with moderate electron energies of 50–80 keV and comparatively low magnetic fields of 10.5–14 T are presented. In this gyrotron, high-power single-mode generation was obtained at the second and third cyclotron harmonics in the frequency range 0.55–1.00 THz. The prospects of development and application of short-wavelength large-orbit gyrotrons are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Gaponov, A. L. Gol’denberg, D. P.Grigoryev, et al., Pis’ma Zh. É ksp. Teor. Fiz., 2, No. 9, 430 (1965).

    Google Scholar 

  2. H.R. Jory, Research and Development Technical Report ECOM-01873-F, Varian Associates, Palo Alto, Ca. (1968).

    Google Scholar 

  3. K. Sakamoto, A.Kasugai, K.Kajiwara, et al., in: Proc. 33rd Int. Conf. on Infrared, Millimeter, and Terahertz Waves, Pasadena, USA, 2008, p.R4A1.1695.

  4. A. G. Litvak, G.G.Denisov, M.V.Agapova, et al., in: Proc. 34th Int. Conf. on Infrared, Millimeter, and Terahertz Waves, Busan, Korea, 2009, p.R4D02.0065.

  5. N. I. Zaitsev, T. B. Pankratova, M. I.Petelin, et al., Radiotekh. Élektron., 19, No. 5, 1056 (1974).

    Google Scholar 

  6. A. G. Luchinin, O.V. Malygin, G. S. Nusinovich, and V.A. Flyagin, Zh. Tekh. Fiz., 53, No. 8, 1629 (1983).

    Google Scholar 

  7. S. Spira-Hakkarainen, K.E. Kreischer, and R. J. Temkin, IEEE Trans. Plasma Sci., 18, No. 3, 334 (1990).

    Article  ADS  Google Scholar 

  8. T. Idehara, I. Ogawa, S. Mitsudo, et al., IEEE Trans. Plasma Sci., 27, No. 2, 340 (1999).

    Article  ADS  Google Scholar 

  9. M.Yu. Glyavin and A.G. Luchinin, Radiophys. Quantum Electron., 50, Nos. 10–11, 755 (2007).

    Article  ADS  Google Scholar 

  10. La Agusu, T. Idehara, H. Mori, et al., Int. J. Infrared Millimeter Waves, 28, No. 28, 315 (2007).

    Article  ADS  Google Scholar 

  11. J. L. Hirshfield, Phys. Rev. A, 44, 6845 (1991).

    Article  ADS  Google Scholar 

  12. I. I.Antakov, A. V. Gaponov, and V.K.Yulpatov, Vopr. Radioeléktron., Ser. 1, Élektron., No. 12, 33 (1965).

  13. M. I. Petelin and V.K.Yulpatov, Radiophys. Quantum Electron., 18, No. 2, 212 (1975).

    Article  ADS  Google Scholar 

  14. D.B.McDermott, N. C. Luhmann, A. Kupiszewski, Jr., and H.R. Jory, Phys. Fluids, 26, 1936 (1983).

    Article  ADS  MATH  Google Scholar 

  15. G. S.Nusinovich, Int. J. Electronics, 72, Nos. 5–6, 959 (1992).

    Article  Google Scholar 

  16. V. L. Bratman, Yu.K.Kalynov, and A. E.Fedotov, Zh. Tekh. Fiz., 68, No. 10, 91 (1998).

    Google Scholar 

  17. D.B.McDermott, N. C. Luhmann, Jr., D. S.Furuno, et al., Int. J. Infrared Millimeter Waves, 4, No. 4, 639 (1983).

    Article  ADS  Google Scholar 

  18. K. R. Chu, D. S.Furuno, N.C. Luhmann, Jr., et al., IEEE Trans. Plasma Sci., 13, 435 (1985).

    Article  ADS  Google Scholar 

  19. M. J.Rhee and W.W.Destler, Phys. Fluids, 17, 1574 (1974).

    Article  ADS  Google Scholar 

  20. W. Lawson, W.W.Destler, and C. D. Striffler, IEEE Trans. Plasma Sci., 13, 444 (1985).

    Article  ADS  Google Scholar 

  21. R.C. Stutsman, S.B.Harriet, D.B.McDermott, et al., Bull. Am. Phys. Soc., 44, 296 (1999).

    Google Scholar 

  22. D. Gallagher, M.Barsanti, F. Scafuri, and C.Armstrong, IEEE Trans. Plasma Sci., 28, No. 3, 695 (1999).

    Google Scholar 

  23. V. L. Bratman, A.E.Fedotov, Yu.K.Kalynov, et al., IEEE Trans. Plasma Sci., 27, 456 (1999).

    Article  ADS  Google Scholar 

  24. V. L. Bratman, Yu.K.Kalynov, V.N.Manuilov, et al., J. Commun. Technol. Electron., 46, No. 6, 688 (2001).

    Google Scholar 

  25. V. L. Bratman, Yu.K.Kalynov, V.N.Manuilov, and S.V. Samsonov, Radiophys. Quantum Electron., 48, Nos. 10–11, 731 (2005).

    Article  ADS  Google Scholar 

  26. V. L. Bratman, Yu.K.Kalynov, V.N.Manuilov, and S.V. Samsonov, in: Joint 30th Int. Conf. on Infrared and Millimeter Waves and 13th Int. Conf. on Terahertz Electronics, Williamsburg, USA, 2005, p. 443.

  27. T. Idehara, I.Ogawa, S. Mitsudo, et al., IEEE Trans. Plasma Sci., 32, 903 (2004).

    Article  ADS  Google Scholar 

  28. E. G. Avdoshin and A. L.Gol’denberg, Radiophys. Quantum Electron., 16, No. 10, 1241 (1973).

    Article  ADS  Google Scholar 

  29. M.Yu.Tretyakov and Yu.K.Kalynov, Instrum. Exp. Tech., 49, No. 5, 661 (2006).

    Article  Google Scholar 

  30. V. I.Belousov, M.M.Ofitserov, V.Yu. Plakhotnik, and Yu.V. Rodin, Instrum. Exp. Tech., 39, No. 3, 402 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Manuilov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 52, No. 7, pp. 525–535, July 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bratman, V.L., Kalynov, Y.K. & Manuilov, V.N. Large-orbit Subterahertz and Terahertz gyrotrons. Radiophys Quantum El 52, 472–481 (2009). https://doi.org/10.1007/s11141-009-9157-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-009-9157-4

Keywords

Navigation