Skip to main content
Log in

Counting multiplicative approximations

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

A famous conjecture of Littlewood (c. 1930) concerns approximating two real numbers by rationals of the same denominator, multiplying the errors. In a lesser-known paper, Wang and Yu (Chin Ann Math 2:1–12, 1981) established an asymptotic formula for the number of such approximations, valid almost always. Using the quantitative Koukoulopoulos–Maynard theorem of Aistleitner–Borda–Hauke, together with bounds arising from the theory of Bohr sets, we deduce lower bounds of the expected order of magnitude for inhomogeneous and fibre refinements of the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Aistleitner, C., Borda, B., Hauke, M.: On the metric theory of approximations by reduced fractions: a quantitative Koukoulopoulos–Maynard theorem. arXiv:2202.00936

  2. Beresnevich, V., Haynes, A., Velani, S.: Sums of Reciprocals of Fractional Parts and Multiplicative Diophantine Approximation, vol. 263. Mem. Amer. Math. Soc. (2020)

  3. Chow, S.: Bohr sets and multiplicative diophantine approximation. Duke Math. J. 167, 1623–1642 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chow, S., Technau, N.: Higher-rank Bohr sets and multiplicative diophantine approximation. Compos. Math. 155, 2214–2233 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chow, S., Technau, N.: Littlewood and Duffin–Schaeffer-type problems in diophantine approximation. Mem. Am. Math. Soc. (to appear)

  6. Duffin, R.J., Schaeffer, A.C.: Khintchine’s problem in metric Diophantine approximation. Duke Math. J. 8, 243–255 (1941)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fregoli, R.: On a counting theorem for weakly admissible lattices. Int. Math. Res. Not. 2021, 7850–7884 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gallagher, P.X.: Metric simultaneous diophantine approximation. J. Lond. Math. Soc. 37, 387–390 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  9. Harman, G.: Metric Number Theory, London Math. Soc. Lecture Note Ser. (N.S.), vol. 18. Clarendon Press, Oxford (1998)

  10. Khintchine, A.I.: Einige Sätze über Kettenbrüche, mit Anwendungen auf die Theorie der Diophantischen Approximationen. Math. Ann. 92, 115–125 (1924)

    Article  MathSciNet  MATH  Google Scholar 

  11. Koukoulopoulos, D., Maynard, J.: On the Duffin-Schaeffer conjecture. Ann. Math. 2(192), 251–307 (2020)

    MathSciNet  MATH  Google Scholar 

  12. Schmidt, W.M.: A metrical theorem in diophantine approximation. Can. J. Math. 12, 619–631 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  13. Wang, Y., Yu, K.R.: A note on some metrical theorems in Diophantine approximation. Chin. Ann. Math. 2, 1–12 (1981)

    MathSciNet  MATH  Google Scholar 

  14. Widmer, M.: Asymptotic diophantine approximation: the multiplicative case. Ramanujan J. 43, 83–93 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank Jakub Konieczny for raising the question, as well as for feedback on an earlier version of this manuscript, and we thank Christoph Aistleitner for a helpful conversation

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niclas Technau.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

NT was supported by a Schrödinger Fellowship of the Austrian Science Fund (FWF): Project J 4464-N.

Appendix A: Computing a volume

Appendix A: Computing a volume

Here, we deduce Theorem 1.6 from [9, Theorem 4.6] and the argument of Wang and Yu [13, Section 1]. For \({\lambda }> 0\), define

$$\begin{aligned} \mathcal B_k({\lambda }) = \{ \mathbf{x}\in [0,1]^k: 0 \le x_1 \cdots x_k \le {\lambda }\} \end{aligned}$$

and

$$\begin{aligned} \mathcal C_k({\lambda }) = \{ \mathbf{x}\in [0,1/2]^k: 0 \le x_1 \cdots x_k \le {\lambda }\}. \end{aligned}$$

By symmetry and [9, Theorem 4.6], for almost all \({\varvec{{\alpha }}}\in \mathbb R^k\), we have

$$\begin{aligned} S_\mathbf{0}^\times ({\varvec{{\alpha }}}, N, \psi ) = T_k(N) + O(\sqrt{T_k(N)} (\log T_k(N))^{2+\varepsilon }), \end{aligned}$$

where

$$\begin{aligned} T_k(N) = 2^k \sum _{n \le N} \mu _k(\mathcal C_k(\psi (n))). \end{aligned}$$

Thus, it remains to show that

$$\begin{aligned} T_k(N) \sim \Psi _k^\times (N) \qquad (N \rightarrow \infty ). \end{aligned}$$
(A.1)

Lemma A.1

For \(k \in \mathbb N\) and \({\lambda }> 0\), we have

$$\begin{aligned} \mu _k(\mathcal B_k({\lambda })) = {\left\{ \begin{array}{ll} 1, &{}\text {if } {\lambda }\ge 1, \\ {\lambda }\sum _{s=0}^{k-1} \frac{(-\log {\lambda })^s}{s!}, &{}\text {if } 0< {\lambda }< 1. \end{array}\right. } \end{aligned}$$

Proof

We induct on k. The base case is clear: \(\mu _1(\mathcal B_1({\lambda })) = \min \{ {\lambda }, 1\}\). Now let \(k \ge 2\), and suppose the conclusion holds with \(k-1\) in place of k. We may suppose that \(0< {\lambda }< 1\). We compute that

$$\begin{aligned} \mu _k(\mathcal B_k({\lambda }))&= \int _0^1 \mu _{k-1} (\mathcal B_{k-1}({\lambda }/x)) {\partial }x = {\lambda }+ \int _{\lambda }^1 \frac{{\lambda }}{x} \sum _{s = 0}^{k-2} \frac{(\log (x/{\lambda }))^s}{s!} {\partial }x \\&= {\lambda }+ \sum _{s=0}^{k-2} \frac{{\lambda }}{s!} \int _1^{1/{\lambda }} \frac{(\log y)^s}{y} {\partial }y = {\lambda }+ {\lambda }\sum _{s=0}^{k-2} \frac{ (- \log {\lambda })^{s+1}}{(s+1)!} \\&= {\lambda }\sum _{t=0}^{k-1} \frac{(-\log {\lambda })^t}{t!}. \end{aligned}$$

\(\square \)

In view of Schmidt’s Theorem 1.4, we may assume that \(k \ge 2\). Now, as

$$\begin{aligned} \mu _k(\mathcal C_k({\lambda })) = 2^{-k} \mu _k(\mathcal B_k(2^k {\lambda })), \end{aligned}$$

and as \(\psi (n) < 2^{-k}\) for large n, we have

$$\begin{aligned} T_k(N)&= O_{k,\psi }(1) + \sum _{n\le N} \psi (n) \sum _{s=0}^{k-1} \frac{(- \log (2^k \psi (n)))^s}{s!} \\&= \Psi _k^\times (N) + O_k(\Psi _{k-1}^\times (N)) + O_{k,\psi }(1). \end{aligned}$$

Since \(\psi (n) \rightarrow 0\) as \(n \rightarrow \infty \), we have \(\Psi _{k-1}^\times (N) + 1 = o(\Psi _k^\times (N))\), and hence, (A.1), completing the proof of Theorem 1.6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chow, S., Technau, N. Counting multiplicative approximations. Ramanujan J 62, 241–250 (2023). https://doi.org/10.1007/s11139-022-00610-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-022-00610-3

Keywords

Mathematics Subject Classification

Navigation