Skip to main content
Log in

On the number of roots of self-inversive polynomials on the complex unit circle

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

We present a sufficient condition for a self-inversive polynomial to have a fixed number of roots on the complex unit circle. We also prove that these roots are simple when that condition is satisfied. This generalizes the condition found by Lakatos and Losonczi for all the roots of a self-inversive polynomial to lie on the complex unit circle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lakatos, P., Losonczi, L.: Self-inversive polynomials whose zeros are on the unit circle. Publ. Math. Debr. 65, 409–420 (2004)

    MathSciNet  MATH  Google Scholar 

  2. Cohn, A.: über die Anzahl der Wurzeln einer algebraischen Gleichung in einem Kreise. Math. Z. 14, 110–148 (1922)

    Article  MATH  Google Scholar 

  3. Rouché, E.: Mémoire sur la série de Lagrange. J. École Polytech. 22, 217–218 (1862)

    Google Scholar 

  4. Bonsall, F.F., Marden, M.: Zeros of self-inversive polynomials. Proc. Am. Math. Soc. 3, 471–475 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ancochea, G.: Zeros of self-inversive polynomials. Proc. Am. Math. Soc. 4, 900–902 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  6. Schinzel, A.: Self-inversive polynomials with all zeros on the unit circle. Ramanujan J. 9(1–2), 19–23 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Marden, M.: Geometry of Polynomials. Mathematical Surveys. American Mathematical Society, Providence (1966)

    MATH  Google Scholar 

  8. Bertin, M.J., Decomps-Guilloux, A., Grandet-Hugot, M., Pathiaux-Delefosse, M., Schreiber, J.P.: Pisot and Salem numbers. Birkhäuser Verlag, Basel (1992)

    Book  MATH  Google Scholar 

  9. Smyth, C.: Seventy years of Salem numbers: a survey. Bull. Lond. Math. Soc. 47(3), 379–395 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Boyd, D.W.: Pisot and Salem numbers in intervals of the real line. Math. Comput. 32, 1244–1260 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  11. Boyd, D.W.: Small Salem numbers. Duke Math. J. 44, 315–328 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hironaka, E.: What is..Lehmer’s number? Not. Am. Math. Soc. 56(3), 374–375 (2009)

    MathSciNet  MATH  Google Scholar 

  13. Vieira, R.S., Lima-Santos, A.: Where are the roots of the Bethe Ansatz equations? Phys. Lett. A 379(37), 2150–2153 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bethe, H.: Zur Theorie der Metalle I. Z. Phys. 71, 205–226 (1931)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The author thanks A. Lima-Santos for the motivation, comments, and discussions and also the anonymous referee of this paper for his valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. S. Vieira.

Additional information

This work was supported by the São Paulo Research Foundation (FAPESP), Grants #2012/02144-7 and #2011/18729-1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vieira, R.S. On the number of roots of self-inversive polynomials on the complex unit circle. Ramanujan J 42, 363–369 (2017). https://doi.org/10.1007/s11139-016-9804-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-016-9804-2

Keywords

Mathematics Subject Classification

Navigation